咨询与建议

限定检索结果

文献类型

  • 68 篇 会议
  • 45 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 87 篇 工学
    • 67 篇 计算机科学与技术...
    • 65 篇 软件工程
    • 18 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 13 篇 生物工程
    • 11 篇 光学工程
    • 11 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 水利工程
    • 2 篇 测绘科学与技术
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
  • 47 篇 理学
    • 26 篇 数学
    • 14 篇 物理学
    • 14 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 1 篇 化学
  • 26 篇 管理学
    • 17 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 7 篇 generative adver...
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 5 篇 machine learning
  • 5 篇 training
  • 4 篇 computational mo...
  • 4 篇 feature extracti...
  • 4 篇 image color anal...
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 electroencephalo...
  • 3 篇 visualization
  • 3 篇 clustering algor...
  • 2 篇 zero-shot learni...
  • 2 篇 breast cancer
  • 2 篇 convolution
  • 2 篇 data mining
  • 2 篇 graphic methods
  • 2 篇 graph neural net...
  • 2 篇 mapreduce

机构

  • 31 篇 intelligent comp...
  • 14 篇 school of biolog...
  • 8 篇 institute of inf...
  • 7 篇 intelligent comp...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 sgit ai lab stat...
  • 5 篇 intelligent comp...
  • 5 篇 university of ad...
  • 5 篇 center for intel...
  • 4 篇 moe-microsoft ke...
  • 4 篇 intelligent comp...
  • 4 篇 college of compu...
  • 4 篇 intelligent comp...
  • 3 篇 key laboratory o...
  • 3 篇 alibaba business...
  • 3 篇 big data institu...
  • 3 篇 ai research code...
  • 3 篇 international bu...
  • 3 篇 center for brain...

作者

  • 42 篇 qin zengchang
  • 21 篇 wan tao
  • 13 篇 zengchang qin
  • 9 篇 lu bao-liang
  • 9 篇 yu jing
  • 7 篇 liu yifan
  • 7 篇 tao wan
  • 6 篇 zhao hai
  • 6 篇 hu yue
  • 5 篇 wang ran
  • 5 篇 jiang xiaoze
  • 4 篇 dai guang
  • 4 篇 wu qi
  • 4 篇 ye haishan
  • 4 篇 wang rui
  • 4 篇 tsang ivor w.
  • 3 篇 huang ying
  • 3 篇 zhang weifeng
  • 3 篇 zhuang jiankai
  • 3 篇 de-shuang huang

语言

  • 112 篇 英文
  • 2 篇 其他
检索条件"机构=Intelligent Computing and Machine Learning Lab."
114 条 记 录,以下是81-90 订阅
排序:
An Evolutionary Model for Efficient Transportation Networks
An Evolutionary Model for Efficient Transportation Networks
收藏 引用
International Conference on intelligent Human-machine Systems and Cybernetics, IHMSC
作者: Ian Huang Mei Chen William Yang Zengchang Qin International School of Beijing Baijing China Department of Electrical Engineering University of Southern California USA Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University China
In this paper, we present a model to automatically generate efficient transportation networks given a simulated urban environment with predefined population distributions and other physical constraints. Based on the e... 详细信息
来源: 评论
Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Luo, Zhenbo Wang, Hua Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 China Samsung RandD Institute China Beijing 18F TaiTangGong Plaza Beijing100028 China
Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images.... 详细信息
来源: 评论
A sequential guiding network with attention for image captioning
arXiv
收藏 引用
arXiv 2018年
作者: Sow, Daouda Qin, Zengchang Niasse, Mouhamed Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University China Keep Labs Keep Inc. Beijing China School of EEE North China Electric Power University China
The recent advances of deep learning in both computer vision (CV) and natural language processing (NLP) provide us a new way of understanding semantics, by which we can deal with more challenging tasks such as automat... 详细信息
来源: 评论
A light rule-based approach to english subject-verb agreement errors on the third person singular forms  29
A light rule-based approach to english subject-verb agreemen...
收藏 引用
29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
作者: Wang, Yuzhu Zhao, Hai Shi, Dan Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China LangYing NLP Research Institute Shanghai Lang Ying Education Technology Co. Ltd China
Verb errors are one of the most common grammar errors made by non-native writers of English. This work especially focus on an important type of verb usage errors, subject-verb agreement for the third person singular f... 详细信息
来源: 评论
Simulation and HRI recent perspectives with the MORSE simulator
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8810卷 13-24页
作者: Lemaignan, Séverin Hanheide, Marc Karg, Michael Khambhaita, Harmish Kunze, Lars Lier, Florian Lütkebohle, Ingo Milliez, Grégoire CHILI Lab. EPFL Lausanne Switzerland Centre for Autonomous Systems University of Lincoln United Kingdom IAS Technische Universität München Germany LAAS/CNRS Université de Toulouse France Intelligent Robotics Lab. University of Birmingham United Kingdom CITEC Bielefeld University Germany Machine Learning and Robotics Lab. Universität Stuttgart Germany
Simulation in robotics is often a love-hate relationship: while simulators do save us a lot of time and effort compared to regular deployment of complex software architectures on complex hardware, simulators are also ... 详细信息
来源: 评论
Motif iteration model for network representation
arXiv
收藏 引用
arXiv 2017年
作者: Lv, Lintao Qin, Zengchang Wan, Tao Intelligent Computing and Machine Learning Lab School of Automation Science and Electrical Engineering Beihang University Beijing Beijing100191 China School of Biological Science and Medical Engineering Beihang University Beijing Beijing100191 China
Social media mining has become one of the most popular research areas in Big Data with the explosion of social networking information from Facebook, Twitter, LinkedIn,Weibo and so on. Understanding and representing th... 详细信息
来源: 评论
DualVD: An adaptive dual encoding model for deep visual understanding in visual dialogue
arXiv
收藏 引用
arXiv 2019年
作者: Jiang, Xiaoze Yu, Jing Qin, Zengchang Zhuang, Yingying Zhang, Xingxing Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Microsoft Research Asia Beijing China University of Adelaide Australia
Different from Visual Question Answering task that requires to answer only one question about an image, Visual Dialogue involves multiple questions which cover a broad range of visual content that could be related to ... 详细信息
来源: 评论
CogTree: Cognition tree loss for unbiased scene graph generation
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Jing Chai, Yuan Wang, Yujing Hu, Yue Wu, Qi Institute of Information Engineering Chinese Academy of Sciences Beijing China Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing China Key Laboratory of Machine Perception MOE School of EECS Peking University Beijing China University of Adelaide Australia
Scene graphs are semantic abstraction of images that encourage visual understanding and reasoning. However, the performance of Scene Graph Generation (SGG) is unsatisfactory when faced with biased data in real-world s... 详细信息
来源: 评论
Modeling Text with Graph Convolutional Network for Cross-Modal Information Retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Jing Lu, Yuhang Qin, Zengchang Liu, Yanbing Tan, Jianlong Guo, Li Zhang, Weifeng Institute of Information Engineering Chinese Academy of Sciences China School of Cyber Security University of Chinese Academy of Sciences China Intelligent Computing and Machine Learning Lab School of Asee Beihang University China Hangzhou Dianzi University China
Cross-modal information retrieval aims to find heterogeneous data of various modalities from a given query of one modality. The main challenge is to map different modalities into a common semantic space, in which dist... 详细信息
来源: 评论
Stock volatility prediction using recurrent neural networks with sentiment analysis
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Yifan Qin, Zengchang Li, Pengyu Wan, Tao Intelligent Computing and Machine Learning Lab School of ASEE Beihang University Beijing100191 School of Mechanical Engineering and Automation Beihang University Beijing100191 School of Biological Science and Medical Engineering Beihang University Beijing100191 China
In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatil-ity in the Chinese market. We have lab.led the sentiment of the online financial posts ... 详细信息
来源: 评论