咨询与建议

限定检索结果

文献类型

  • 335 篇 期刊文献
  • 268 篇 会议
  • 3 册 图书

馆藏范围

  • 606 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 400 篇 工学
    • 162 篇 计算机科学与技术...
    • 154 篇 控制科学与工程
    • 137 篇 软件工程
    • 80 篇 电气工程
    • 70 篇 机械工程
    • 66 篇 信息与通信工程
    • 50 篇 电子科学与技术(可...
    • 43 篇 生物工程
    • 39 篇 仪器科学与技术
    • 36 篇 光学工程
    • 30 篇 生物医学工程(可授...
    • 22 篇 化学工程与技术
    • 20 篇 力学(可授工学、理...
    • 18 篇 交通运输工程
    • 16 篇 材料科学与工程(可...
    • 15 篇 动力工程及工程热...
    • 15 篇 建筑学
    • 15 篇 安全科学与工程
    • 14 篇 土木工程
  • 244 篇 理学
    • 119 篇 数学
    • 81 篇 物理学
    • 48 篇 生物学
    • 45 篇 系统科学
    • 33 篇 统计学(可授理学、...
    • 16 篇 化学
  • 56 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 30 篇 医学
    • 27 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 6 篇 经济学
  • 6 篇 法学
  • 5 篇 教育学
  • 5 篇 农学
  • 2 篇 军事学

主题

  • 24 篇 control systems
  • 23 篇 mobile robots
  • 21 篇 intelligent robo...
  • 18 篇 robot sensing sy...
  • 16 篇 neural networks
  • 14 篇 laboratories
  • 13 篇 intelligent cont...
  • 12 篇 robot kinematics
  • 11 篇 robots
  • 10 篇 estimation
  • 9 篇 deep learning
  • 9 篇 state estimation
  • 9 篇 robotics and aut...
  • 8 篇 motion planning
  • 8 篇 navigation
  • 8 篇 intelligent syst...
  • 7 篇 object detection
  • 7 篇 stability analys...
  • 7 篇 process control
  • 7 篇 fuzzy control

机构

  • 20 篇 institutes for r...
  • 16 篇 university of ch...
  • 16 篇 state key labora...
  • 14 篇 shanghai enginee...
  • 10 篇 key laboratory o...
  • 9 篇 school of electr...
  • 9 篇 school of automa...
  • 8 篇 intelligent cont...
  • 8 篇 shanghai researc...
  • 8 篇 fujian provincia...
  • 8 篇 school of electr...
  • 7 篇 hubei key labora...
  • 7 篇 department of el...
  • 7 篇 beijing key labo...
  • 7 篇 department of el...
  • 7 篇 department of au...
  • 7 篇 department of el...
  • 6 篇 department of au...
  • 6 篇 key laboratory o...
  • 6 篇 school of contro...

作者

  • 16 篇 wang hesheng
  • 11 篇 yonghong tan
  • 10 篇 wang guangming
  • 9 篇 meng max q.-h.
  • 9 篇 shi ling
  • 7 篇 johansson karl h...
  • 7 篇 max q.-h. meng
  • 7 篇 stjepan bogdan
  • 7 篇 wang jiankun
  • 6 篇 jun zhang
  • 6 篇 hong yiguang
  • 6 篇 fan rui
  • 6 篇 junping du
  • 6 篇 ai bo
  • 6 篇 wang chaoqun
  • 6 篇 zhang fuquan
  • 6 篇 chen guanrong
  • 6 篇 wang jingchuan
  • 6 篇 yingmin jia
  • 6 篇 xinhan huang

语言

  • 566 篇 英文
  • 30 篇 其他
  • 9 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=Intelligent Control and Robotics Laboratory Department of Electronic Engineering"
606 条 记 录,以下是151-160 订阅
排序:
Deep Domain Adaptation Regression for Force Calibration of Optical Tactile Sensors
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhuo Ou, Ni Jiang, Jiaqi Luo, Shan Robot Perception Lab Centre for Robotics Research Department of Engineering King’s College London LondonWC2R 2LS United Kingdom State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China
Optical tactile sensors provide robots with rich force information for robot grasping in unstructured environments. The fast and accurate calibration of three-dimensional contact forces holds significance for new sens... 详细信息
来源: 评论
Stealthy Data Integrity Attacks Against Grid-tied Photovoltaic Systems
Stealthy Data Integrity Attacks Against Grid-tied Photovolta...
收藏 引用
Industrial Cyber-Physical Systems (ICPS)
作者: Sha Peng Mengxiang Liu Ke Zuo Wei Tan Ruilong Deng State Key Laboratory of Industrial Control Technology College of Control Science and Engineering Zhejiang University Hangzhou China Department of Electrical and Electronic Engineering Imperial College London London U.K. Shanghai Hanxiang Intelligent Technology Co. Ltd. Shanghai China
Under the transformation of electric grid towards sustainability and decarbonization, a large number of distributed energy resources including solar photovoltaic (PV) farms are expected to penetrate the grid. As one o... 详细信息
来源: 评论
Urban Digital Twins for intelligent Road Inspection
Urban Digital Twins for Intelligent Road Inspection
收藏 引用
2022 IEEE International Conference on Big Data, Big Data 2022
作者: Fan, Rui Zhang, Yikang Guo, Sicen Li, Jiahang Feng, Yi Su, Shuai Zhang, Yanting Wang, Wenshuo Jiang, Yu Junaid Bocus, Mohammud Zhu, Xingyi Chen, Qijun Department of Control Science & Engineering Frontiers Science Center for Intelligent Autonomous Systems State Key Laboratory of Intelligent Autonomous Systems Shanghai201804 China Donghua University Department of Computer Science & Technology Shanghai201620 China McGill University Department of Civil Engineering MontrealH3A 0C3 Canada Cto Office at ClearMotion BillericaMA01821 United States University of Bristol Department of Electrical & Electronic Engineering BristolBS8 1UB United Kingdom Tongji University Key Laboratory of Road and Traffic Engineering Ministry of Education Shanghai200092 China
Urban digital twin (UDT) technologies offer new opportunities for intelligent road inspection (IRI). This paper first reviews the state-of-the-art algorithms used in the two key components of UDT-based IRI systems: (1... 详细信息
来源: 评论
TransForce: Transferable Force Prediction for Vision-based Tactile Sensors with Sequential Image Translation
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhuo Ou, Ni Zhang, Xuyang Luo, Shan The Robot Perception Lab Centre for Robotics Research Department of Engineering King's College London LondonWC2R 2LS United Kingdom The State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China
Vision-based tactile sensors (VBTSs) provide high-resolution tactile images crucial for robot in-hand manipulation. However, force sensing in VBTSs is underutilized due to the costly and time-intensive process of acqu... 详细信息
来源: 评论
AI Enabled Automatic Mobile Robot intelligent Navigation in Construction with Obstacle Awareness
收藏 引用
IEEE Transactions on Automation Science and engineering 2025年
作者: Zhang, Yinlong Liu, Yuanhao Cui, Yunge Zeng, Ziming Liang, Wei Chinese Academy of Sciences State Key Laboratory of Robotics Shenyang Institute of Automation Shenyang110016 China Chinese Academy of Sciences Key Laboratory of Networked Control Systems Shenyang110016 China University of Chinese Academy of Sciences Beijing101408 China Zeekr Group Zeekr Intelligent Driving Department Shanghai110078 China Shenzhen Polytechnic University School of Automotive and Transportation Engineering Shenzhen518055 China
In the construction industry, the integration of artificial intelligence (AI) and robotics has led to significant advancements in automating various tasks. One critical aspect is the intelligent navigation of automati... 详细信息
来源: 评论
Application of Deep Learning Method to Estimate Bottomhole Pressure Dynamics of Oil Wells
Application of Deep Learning Method to Estimate Bottomhole P...
收藏 引用
IEEE International Symposium on Industrial electronics (ISIE)
作者: Haibo Cheng Shichao Li Peng Zeng Valeriy Vyatkin State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang China Department of Computer Science Electrical and Space Engineering Luleå University of Technology Luleå Sweden Department of Electrical Engineering and Automation Aalto University Helsinki Finland
Surrogate models, which have become an effective and popular method to close loop reservoir management problems, use a data-driven approach to predict dynamic injection and production wells parameters and optimize wat...
来源: 评论
Rethinking development and major research plans of Industrial Internet in China
收藏 引用
Fundamental Research 2024年 第1期4卷 3-7页
作者: Chunxiao Jiang Yang Cong Jiming Chen Chenghong Wang Guozheng Wu Ruizhen Zhao Zhiheng Wang Bin Xiao Ting Chen Beijing National Research Center for Information Science and Technology Tsinghua UniversityBeijing 100084China Tsinghua Space Center Tsinghua UniversityBeijing 100084China State Key Laboratory of Robotics Shenyang Institute of AutomationChinese Academy of SciencesShenyang 110016China College of Control Science and Engineering Zhejiang UniversityHangzhou 310027China Division III Department of Information SciencesNational Natural Science Foundation of ChinaBeijing 100085China Division II Department of Information SciencesNational Natural Science Foundation of ChinaBeijing 100085China Chongqing Key Laboratory of Image Cognition School of Computer Science and TechnologyChongqing University of Posts and TelecommunicationsChongqing 400065China University of Electronic Science and Technology of China Chengdu 611731China
This paper gives a definition of the Industrial Internet and expounds on the academic connotation of the future Industrial *** this foundation,we outline the development and current status of the Industrial Internet i... 详细信息
来源: 评论
YOLO-Ant: A Lightweight Detector via Depthwise Separable Convolutional and Large Kernel Design for Antenna Interference Source Detection
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Xiaoyu Chen, Xingming Cheng, Jintao Wu, Jin Fan, Rui Zhang, Chengxi Zhou, Zebo The School of Electronic and Information Engineering Faculty of Engineering South China Normal University Guangdong Foshan528225 China The School of Physics South China Normal University Guangdong Guangzhou510000 China The Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong The College of Electronics & Information Engineering Shanghai Research Institute for Intelligent Autonomous Systems The State Key Laboratory of Intelligent Autonomous Systems Frontiers Science Center for Intelligent Autonomous Systems Tongji University Shanghai201804 China The School of Internet of Things Engineering Jiangnan University Wuxi214122 China The School of Aeronautics Astronautics University of Electronic Science and Technology of China and Aircraft swarm intelligent sensing and cooperative control Key Laboratory of Sichuan Province Chengdu610097 China The National Laboratory on Adaptive Optics Chengdu610209 China
In the era of 5G communication, removing interference sources that affect communication is a resource-intensive task. The rapid development of computer vision has enabled unmanned aerial vehicles to perform various hi... 详细信息
来源: 评论
Unsupervised Learning of 3D Scene Flow from Monocular Camera
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Guangming Tian, Xiaoyu Ding, Ruiqi Wang, Hesheng Department of Automation Institute of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai 200240 China
Scene flow represents the motion of points in the 3D space, which is the counterpart of the optical flow that represents the motion of pixels in the 2D image. However, it is difficult to obtain the ground truth of sce... 详细信息
来源: 评论
A Unified Formulation of Geometry-aware Discrete Dynamic Movement Primitives
arXiv
收藏 引用
arXiv 2022年
作者: Abu-Dakka, Fares J. Saveriano, Matteo Kyrki, Ville Electronic and Computer Science Department Faculty of Engineering Mondragon Unibertsitatea Arrasate20500 Spain Automatic Control Lab Department of Industrial Engineering University of Trento Trento Italy Intelligent Robotics Group Department of Electrical Engineering and Automation Aalto University Aalto Finland
Learning from demonstration (LfD) is considered as an efficient way to transfer skills from humans to robots. Traditionally, LfD has been used to transfer Cartesian and joint positions and forces from human demonstrat... 详细信息
来源: 评论