A method for learning disjunctive rules using a combination of two existing neural network schemes is proposed. The hybrid network consists of two layers; the first is an unsupervised network while the second is a sup...
详细信息
A method for learning disjunctive rules using a combination of two existing neural network schemes is proposed. The hybrid network consists of two layers; the first is an unsupervised network while the second is a supervised network. The first layer is used for ordering the inputs of training instances into clusters. Initial rules are extracted from this layer using an existing technique called Unsupervised BRAINNE. These rules are then fed into the second layer which is trained using the delta rule. The second layer is then examined to determine which clusters define the output nodes. This method is able to identify disjunctive rules directly rather than utilising a generate and test paradigm as was used in previous supervised versions of BRAINNE.
Based on our years-of-research, a data mining system, DB-Miner, has been developed for interactive mining of multiple-level knowledge in large relational databases. The system implements a wide spectrum of data mining...
ISBN:
(纸本)9780897917940
Based on our years-of-research, a data mining system, DB-Miner, has been developed for interactive mining of multiple-level knowledge in large relational databases. The system implements a wide spectrum of data mining functions, including generalization, characterization, association, classification, and prediction. By incorporation of several interesting data mining techniques, including attribute-oriented induction, progressive deepening for mining multiple-level rules, and meta-rule guided knowledge mining, the system provides a user-friendly, interactive data mining environment with good performance.
A constraint-based reasoning system is used for knowledge representation and reasoning in behavioural animation, specifically in the animation of sailing behaviour. The object-oriented ECHIDNA reasoning and constraint...
详细信息
A constraint-based reasoning system is used for knowledge representation and reasoning in behavioural animation, specifically in the animation of sailing behaviour. The object-oriented ECHIDNA reasoning and constraint logic programming shell handles the constraints for formulation and execution of plans for intelligent entities. At higher levels of control, the observed motion of an object is a reflection of the reasoning process of an intelligent entity as it reacts to its environment. The environment, internal knowledge and physical structure serve as constraints in developing a plan, which in turn provides additional constraints in the animation of reactive behaviour. An animation approach using constraint-based reasoning is presented focusing on details of the planning process adapted in the approach. The implementation of the NSAIL program reveals further insight into applying this approach towards the development of a high-level intuitive interface for behavioural animation.< >
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are su...
详细信息
Microservice architectures are increasingly used to modularize IoT applications and deploy them in distributed and heterogeneous edge computing environments. Over time, these microservice-based IoT applications are susceptible to performance anomalies caused by resource hogging (e.g., CPU or memory), resource contention, etc., which can negatively impact their Quality of Service and violate their Service Level Agreements. Existing research on performance anomaly detection for edge computing environments focuses on model training approaches that either achieve high accuracy at the expense of a time-consuming and resource-intensive training process or prioritize training efficiency at the cost of lower accuracy. To address this gap, while considering the resource constraints and the large number of devices in modern edge platforms, we propose two clustering-based model training approaches: (1) intra-cluster parameter transfer learning-based model training (ICPTL) and (2) cluster-level model training (CM). These approaches aim to find a trade-off between the training efficiency of anomaly detection models and their accuracy. We compared the models trained under ICPTL and CM to models trained for specific devices (most accurate, least efficient) and a single general model trained for all devices (least accurate, most efficient). Our findings show that ICPTL’s model accuracy is comparable to that of the model per device approach while requiring only 40% of the training time. In addition, CM further improves training efficiency by requiring 23% less training time and reducing the number of trained models by approximately 66% compared to ICPTL, yet achieving a higher accuracy than a single general model.
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data manag...
详细信息
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data management. The combination of Web3.0 and edge content caching holds promise in providing low-latency data access for CAVs’ real-time applications. Web3.0 enables the reliable pre-migration of frequently requested content from content providers to edge nodes. However, identifying optimal edge node peers for joint content caching and replacement remains challenging due to the dynamic nature of traffic flow in IoV. Addressing these challenges, this article introduces GAMA-Cache, an innovative edge content caching methodology leveraging Graph Attention Networks (GAT) and Multi-Agent Reinforcement Learning (MARL). GAMA-Cache conceptualizes the cooperative edge content caching issue as a constrained Markov decision process. It employs a MARL technique predicated on cooperation effectiveness to discern optimal caching decisions, with GAT augmenting information extracted from adjacent nodes. A distinct collaborator selection mechanism is also developed to streamline communication between agents, filtering out those with minimal correlations in the vector input to the policy network. Experimental results demonstrate that, in terms of service latency and delivery failure, the GAMA-Cache outperforms other state-of-the-art MARL solutions for edge content caching in IoV.
Trajectory prediction is a crucial challenge in autonomous vehicle motion planning and decision-making techniques. However, existing methods face limitations in accurately capturing vehicle dynamics and interactions. ...
详细信息
Trajectory prediction is a crucial challenge in autonomous vehicle motion planning and decision-making techniques. However, existing methods face limitations in accurately capturing vehicle dynamics and interactions. To address this issue, this paper proposes a novel approach to extracting vehicle velocity and acceleration, enabling the learning of vehicle dynamics and encoding them as auxiliary information. The VDI-LSTM model is designed, incorporating graph convolution and attention mechanisms to capture vehicle interactions using trajectory data and dynamic information. Specifically, a dynamics encoder is designed to capture the dynamic information, a dynamic graph is employed to represent vehicle interactions, and an attention mechanism is introduced to enhance the performance of LSTM and graph convolution. To demonstrate the effectiveness of our model, extensive experiments are conducted, including comparisons with several baselines and ablation studies on real-world highway datasets. Experimental results show that VDI-LSTM outperforms other baselines compared, which obtains a 3% improvement on the average RMSE indicator over the five prediction steps.
暂无评论