咨询与建议

限定检索结果

文献类型

  • 79 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 96 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 50 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 生物医学工程(可授...
    • 26 篇 软件工程
    • 22 篇 光学工程
    • 13 篇 电气工程
    • 13 篇 电子科学与技术(可...
    • 10 篇 生物工程
    • 9 篇 信息与通信工程
    • 6 篇 机械工程
    • 6 篇 控制科学与工程
    • 5 篇 仪器科学与技术
    • 3 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 交通运输工程
  • 32 篇 理学
    • 19 篇 数学
    • 16 篇 物理学
    • 10 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 3 篇 化学
  • 13 篇 医学
    • 11 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 4 篇 中西医结合
    • 4 篇 医学技术(可授医学...
    • 3 篇 公共卫生与预防医...
  • 8 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 公共管理
  • 2 篇 艺术学
    • 2 篇 设计学(可授艺术学...
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 14 篇 magnetic resonan...
  • 11 篇 image segmentati...
  • 8 篇 diffusion tensor...
  • 8 篇 epilepsy
  • 8 篇 feature extracti...
  • 7 篇 brain
  • 7 篇 biomedical imagi...
  • 6 篇 magnetic resonan...
  • 6 篇 process control
  • 6 篇 temporal lobe
  • 6 篇 diseases
  • 5 篇 algorithm design...
  • 5 篇 correlation
  • 5 篇 clustering algor...
  • 5 篇 image analysis
  • 5 篇 anisotropic magn...
  • 5 篇 tumors
  • 5 篇 surgery
  • 4 篇 data mining
  • 4 篇 computerized tom...

机构

  • 19 篇 control and inte...
  • 8 篇 image analysis l...
  • 6 篇 radiology image ...
  • 6 篇 control and inte...
  • 5 篇 image analysis l...
  • 5 篇 control and inte...
  • 4 篇 key laboratory o...
  • 4 篇 image analysis l...
  • 4 篇 school of cognit...
  • 4 篇 ihu strasbourg s...
  • 4 篇 image analysis l...
  • 4 篇 department of ra...
  • 4 篇 control and inte...
  • 4 篇 heidelberg
  • 3 篇 radiology depart...
  • 3 篇 department of ra...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 college of infor...

作者

  • 28 篇 hamid soltanian-...
  • 15 篇 soltanian-zadeh ...
  • 12 篇 h. soltanian-zad...
  • 4 篇 rieke nicola
  • 4 篇 yang jie
  • 4 篇 wang lihui
  • 4 篇 isensee fabian
  • 4 篇 hu zhongyi
  • 3 篇 kreshuk anna
  • 3 篇 hossein-zadeh gh...
  • 3 篇 rajpoot nasir
  • 3 篇 shahram akhlaghp...
  • 3 篇 kozubek michal
  • 3 篇 haase robert
  • 3 篇 bakas spyridon
  • 3 篇 karthikesalingam...
  • 3 篇 gholam-ali hosse...
  • 3 篇 galdran adrian
  • 3 篇 akhlaghpoor shah...
  • 3 篇 reinke annika

语言

  • 92 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Intelligent Image Processing and Analysis Laboratory"
96 条 记 录,以下是91-100 订阅
排序:
Medical Data Mining using Particle Swarm Optimization for Temporal Lobe Epilepsy
Medical Data Mining using Particle Swarm Optimization for Te...
收藏 引用
Congress on Evolutionary Computation
作者: M. Ghannad-Rezaie H. Soltanain-Zadeh M.-R. Siadat K.V. Elisevich Henry Ford Health System and Wayne State University Detroit MI USA Radiology Image Analysis Laboratory Henry Ford Health System Detroit MI USA Control and Intelligent Processing Center of Excellence School of Electrical and Computer Engineering University of Tehran Tehran Iran Neurosurgery Department Henry Ford Health System Detroit MI USA
In clinical problems, numerous factors are usually involved in a medical syndrome. New advances in medicine provide a broad range of diagnosis methods to cover all aspects of a disease. However, huge amounts of raw in... 详细信息
来源: 评论
Controlling the false positive detection rate in fuzzy clustering of fMRI data
Controlling the false positive detection rate in fuzzy clust...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: H. Jahanian H. Soltanian-Zadeh G.A. Hossein-Zadeh Signal and Image Processing Group School of Intelligent Systems Institute of Studies in Theoretical Physics and Mathematics Tehran Iran Elec. Eng. Department Control and Intelligent Processing Center of Excellence University of Tehran Tehran Iran Image Analysis Laboratory Radiology Department Henry Ford Health System Detroit MI USA
Despite its potential advantages for fMRI analysis, fuzzy C-means (FCM) clustering suffers from limitations such as the need for a priori knowledge of the number of clusters, and unknown statistical significance and i... 详细信息
来源: 评论
Clustering-based framework for comparing fMRI analysis methods
Clustering-based framework for comparing fMRI analysis metho...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: G.-A. Hossein-Zadeh A.-M. Golestani H. Soltanian-Zadeh Control and Intelligent Processing Center of Excellence Electrical and Computer Engineering Department Faculty of Engineering University of Tehran Tehran Iran Image Analysis Laboratory Radiology Department Henry Ford Health System Detroit MI USA
In this paper, a cluster-based framework is introduced for comparing analysis methods of functional magnetic resonance images (fMRI). In the proposed framework, fMRI data is replaced with a feature space and each meth... 详细信息
来源: 评论
Multiresolution automatic segmentation of T1-weighted brain MR images
Multiresolution automatic segmentation of T1-weighted brain ...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: M. Zeydabadi R.A. Zoroofi H. Soltanian-Zadeh Control and Intelligent Processing Center of Excellence Electrical and Computer Engineering Department Faculty of Engineering University of Tehran Tehran Iran Radiology Department Henry Ford Health System Image Analysis and Communications Laboratory Detroit MI USA
Automatic segmentation of brain tissues is crucial to many medical imaging applications. We use a multi-resolution analysis and a power transform to extend the well-known Gaussian mixture model expectation maximizatio... 详细信息
来源: 评论
MRSI brain tumor characterization using wavelet and wavelet packets feature spaces and artificial neural networks
MRSI brain tumor characterization using wavelet and wavelet ...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: A. Yazdan-Shahmorad H. Soltanian-Zadeh R.A. Zoroofi Control and Intelligent Processing Center of Excellence Electrical and Computer Engineering Department Faculty of Engineering University of Tehran Tehran Iran Radiology Department Henry Ford Health System Image Analysis and Communications Laboratory Detroit MI USA
Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique for assessing biochemical fingerprint of tissue composition. The need to differentiate between normal and abnormal tissues and determine type... 详细信息
来源: 评论
Activation detection in multi-subject studies of fMRI using GLRT
Activation detection in multi-subject studies of fMRI using ...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: S.M. Shams G.A. Hossein-Zadeh H. Soltanian-Zadeh Control and Intelligent Processing Center of Excellence Electrical and Computer Engineering Department Institute for Studies in Theoretical Physics and Mathematics University of Tehran School of Cognitive Sciences Tehran Iran Control and Intelligent Processing Center of Excellence Electrical and Computer Engineering Department Institute for Studies in Theoretical Physics and Mathematics and Medical Image Analysis Laboratory Henry Ford Health System University of Tehran School of Cognitive Sciences Iran
A new method based on generalized likelihood ratio test (GLRT) for activation detection in multi-subject studies of functional MRI (fMRI) is proposed. In this method, we test the correlation between the fMRI time seri... 详细信息
来源: 评论