咨询与建议

限定检索结果

文献类型

  • 337 篇 期刊文献
  • 238 篇 会议
  • 13 册 图书

馆藏范围

  • 588 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 402 篇 工学
    • 292 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 93 篇 信息与通信工程
    • 79 篇 控制科学与工程
    • 65 篇 生物工程
    • 52 篇 生物医学工程(可授...
    • 50 篇 电气工程
    • 42 篇 光学工程
    • 30 篇 机械工程
    • 28 篇 电子科学与技术(可...
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 12 篇 化学工程与技术
    • 12 篇 安全科学与工程
    • 11 篇 材料科学与工程(可...
  • 224 篇 理学
    • 105 篇 数学
    • 71 篇 生物学
    • 49 篇 物理学
    • 36 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 13 篇 化学
  • 127 篇 管理学
    • 67 篇 图书情报与档案管...
    • 59 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 44 篇 医学
    • 38 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 18 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 20 篇 法学
    • 14 篇 社会学
  • 11 篇 经济学
    • 11 篇 应用经济学
  • 8 篇 教育学
  • 4 篇 农学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 22 篇 machine learning
  • 17 篇 deep learning
  • 15 篇 artificial intel...
  • 13 篇 feature extracti...
  • 12 篇 semantics
  • 12 篇 training
  • 10 篇 accuracy
  • 8 篇 information syst...
  • 7 篇 support vector m...
  • 7 篇 data mining
  • 7 篇 visualization
  • 7 篇 information retr...
  • 7 篇 forecasting
  • 7 篇 convolutional ne...
  • 7 篇 information stor...
  • 6 篇 computer science
  • 6 篇 computer communi...
  • 6 篇 convolution
  • 6 篇 optimization
  • 6 篇 authentication

机构

  • 11 篇 department of co...
  • 11 篇 school of inform...
  • 9 篇 key lab. of inte...
  • 9 篇 department of co...
  • 8 篇 school of comput...
  • 8 篇 shanghai key lab...
  • 8 篇 department of au...
  • 7 篇 shanghai key lab...
  • 6 篇 intelligent know...
  • 6 篇 department of co...
  • 6 篇 peng cheng labor...
  • 6 篇 department of co...
  • 6 篇 department of co...
  • 6 篇 school of cyber ...
  • 6 篇 faculty of engin...
  • 6 篇 zhejiang lab
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...

作者

  • 19 篇 tao zhang
  • 12 篇 gong chen
  • 11 篇 yue-jie zhang
  • 9 篇 kao hung-yu
  • 9 篇 cao xiaochun
  • 8 篇 huang qingming
  • 8 篇 xu qianqian
  • 8 篇 leila ismail
  • 8 篇 yuejie zhang
  • 7 篇 han bo
  • 7 篇 yang yang
  • 7 篇 yang jian
  • 6 篇 sakorn mekruksav...
  • 6 篇 sun fuchun
  • 6 篇 datchakorn tanch...
  • 6 篇 liu tongliang
  • 6 篇 anuchit jitpatta...
  • 6 篇 rui feng
  • 5 篇 chen gong
  • 5 篇 zhang tao

语言

  • 546 篇 英文
  • 31 篇 其他
  • 11 篇 中文
检索条件"机构=Intelligent Knowledge Management Lab Department of Computer Science and Information Engineering"
588 条 记 录,以下是321-330 订阅
排序:
RCAnalyzer:visual analytics of rare categories in dynamic networks
收藏 引用
Frontiers of information Technology & Electronic engineering 2020年 第4期21卷 491-506页
作者: Jia-cheng PAN Dong-ming HAN Fang-zhou GUO Da-wei ZHOU Nan CAO Jing-rui HE Ming-liang XU Wei CHEN State Key Lab of CAD&CG Zhejiang UniversityHangzhou 310058China Zhejiang Lab Hangzhou 311100China Department of Computer Science and Engineering Arizona State UniversityTempe 85281USA Intelligent Big Data Visualisation Lab Tongji UniversityShanghai 200082China School of Information Engineering Zhengzhou UniversityZhengzhou 450001China Henan Institute of Advanced Technology Zhengzhou UniversityZhengzhou 450001China
A dynamic network refers to a graph structure whose nodes and/or links dynamically change over *** visualization and analysis techniques focus mainly on summarizing and revealing the primary evolution patterns of the ... 详细信息
来源: 评论
3D Hierarchical Refinement and Augmentation for Unsupervised Learning of Depth and Pose from Monocular Video
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Guangming Zhong, Jiquan Zhao, Shijie Wu, Wenhua Liu, Zhe Wang, Hesheng Department of Automation Institute of Medical Robotics Key Laboratory of System Control and Information Processing Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai200240 China Department of Engineering Mechanics Shanghai Jiao Tong University Shanghai200240 China Department of Computer Science and Technology University of Cambridge CambridgeCB2 1TN United Kingdom
Depth and ego-motion estimations are essential for the localization and navigation of autonomous robots and autonomous driving. Recent studies make it possible to learn the per-pixel depth and ego-motion from the unla... 详细信息
来源: 评论
Shaping the Metaverse into Reality: A Holistic Multidisciplinary Understanding of Opportunities, Challenges, and Avenues for Future Investigation
收藏 引用
Data Processor for Better Business Education 2023年 第3期63卷 735-765页
作者: Alex Koohang Jeretta Horn Nord Keng-Boon Ooi Garry Wei-Han Tan Mostafa Al-Emran Eugene Cheng-Xi Aw Abdullah Mohammed Baabdullah Dimitrios Buhalis Tat-Huei Cham Charles Dennis Vincent Dutot Yogesh K. Dwivedi Laurie Hughes Emmanuel Mogaji Neeraj Pandey Ian Phau Ramakrishnan Raman Anshuman Sharma Marianna Sigala Akiko Ueno Lai-Wan Wong a School of Computing Middle Georgia State University Macon GA USA b Department of Management Science and Information Systems Oklahoma State University Stillwater OK USA c UCSI Graduate Business School UCSI University Kuala Lumpur Malaysiad School of Finance and Economics Nanchang Institute of Technology Nanchang People’s Republic of Chinau Faculty of Business Design and Arts Swinburne University of Technology Sarawak Campus Malaysia c UCSI Graduate Business School UCSI University Kuala Lumpur Malaysiad School of Finance and Economics Nanchang Institute of Technology Nanchang People’s Republic of Chinae School of Economics and Management Yunnan Normal University Kunming People’s Republic of Chinau Faculty of Business Design and Arts Swinburne University of Technology Sarawak Campus Malaysia f Faculty of Engineering & IT The British University in Dubai Dubai United Arab Emiratesg Department of Computer Techniques Engineering Dijlah University College Baghdad Iraq c UCSI Graduate Business School UCSI University Kuala Lumpur Malaysia h Department of Management Information Systems Faculty of Economics and Administration King Abdulaziz University Jeddah Saudi Arabia i Department of Tourism and Hospitality Bournemouth University Poole UK c UCSI Graduate Business School UCSI University Kuala Lumpur Malaysiaj Tashkent State University of Economics Tashkent Uzbekistan k Business School Middlesex University London UK l EM Normandie Business School Métis Lab Clichy France m Digital Futures for Sustainable Business & Society Research Group School of Management Swansea University Swansea UKn Department of Management Symbiosis Institute of Business Management Pune & Symbiosis International (Deemed University) Pune India m Digital Futures for Sustainable Business & Society Research Group School of Management Swansea University Swansea UK o School of Management & Marketing University of Greenwich London UK p National Institute of Industrial Engineering Mum
ABSTRACTABSTRACTThe term metaverse is described as the next iteration of the Internet. Metaverse is a virtual platform that uses extended reality technologies, i.e. augmented reality, virtual reality, mixed reality, 3... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM Image Processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
作者: Hu, Rui Cai, Jiaming Zheng, Wangjie Yang, Yang Shen, Hong-Bin Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiao Tong University Department of Bioinformatics and Biostatistics Shanghai200240 China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
DPNet: Dynamic Pooling Network for Accurate and Efficient Size-Aware Tiny Object Detection
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Gong, Luqi Chen, Haotian Chen, Yikun Yao, Tianliang Li, Chao Zhao, Shuai Han, Guangjie Beijing University of Posts and Telecommunications School of Computer Science Beijing China Zhejiang Lab Research Center for Space Computing System Hangzhou China Southwest Jiaotong University SWJTU-LEEDS Joint School Chengdu China LTD Guangdong Zhiyun City construction Technology Co Zhuhai China Tongji University College of Electronic and Information Engineering Department of Control Science and Engineering Shanghai China Hohai University Key Laboratory of Maritime Intelligent Network Information Technology Ministry of Education China
In unmanned aerial systems, especially in complex environments, accurately detecting tiny objects is crucial. Resizing images is a common strategy to improve detection accuracy, particularly for small objects. However... 详细信息
来源: 评论
Resonant beam communications with echo interference elimination
arXiv
收藏 引用
arXiv 2021年
作者: Xiong, Mingliang Liu, Qingwen Wang, Gang Giannakis, Georgios B. Zhang, Sihai Zhu, Jinkang Huang, Chuan College of Electronics and Information Engineering Tongji University Shanghai201804 China State Key Lab of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China Department of Electrical and Computer Engineering University of Minnesota MinneapolisMN55455 United States Key Lab of Wireless-Optical Communications University of Science and Technology of China Hefei Anhui230026 China School of Science and Engineering Chinese University of Hong Kong Shenzhen Guangdong518172 Hong Kong
Resonant beam communications (RBCom) is capable of providing wide bandwidth when using light as the carrier. Besides, the RBCom system possesses the characteristics of mobility, high signal-to-noise ratio (SNR), and m... 详细信息
来源: 评论
DPNet: Dynamic Pooling Network for Tiny Object Detection
arXiv
收藏 引用
arXiv 2025年
作者: Gong, Luqi Chen, Haotian Chen, Yikun Yao, Tianliang Li, Chao Zhao, Shuai Han, Guangjie School of Computer Science Beijing University of Posts and Telecommunications Beijing China Research Center for Space Computing System Zhejiang Lab Hangzhou China SWJTU-LEEDS Joint School Southwest Jiaotong University Chengdu China Guangdong Zhiyun City construction Technology Co. LTD Zhuhai China Department of Control Science and Engineering College of Electronic and Information Engineering Tongji University Shanghai China Key Laboratory of Maritime Intelligent Network Information Technology Ministry of Education Hohai University China
In unmanned aerial systems, especially in complex environments, accurately detecting tiny objects is crucial. Resizing images is a common strategy to improve detection accuracy, particularly for small objects. However... 详细信息
来源: 评论
Opportunities and challenges for monitoring terrestrial biodiversity in the robotics age
收藏 引用
Nature Ecology and Evolution 2025年 第6期9卷 1031-1042页
作者: Pringle, Stephen Dallimer, Martin Goddard, Mark A. Le Goff, Léni K. Hart, Emma Langdale, Simon J. Fisher, Jessica C. Abad, Sara-Adela Ancrenaz, Marc Angeoletto, Fabio Auat Cheein, Fernando Austen, Gail E. Bailey, Joseph J. Baldock, Katherine C. R. Banin, Lindsay F. Banks-Leite, Cristina Barau, Aliyu S. Bashyal, Reshu Bates, Adam J. Bicknell, Jake E. Bielby, Jon Bosilj, Petra Bush, Emma R. Butler, Simon J. Carpenter, Dan Clements, Christopher F. Cully, Antoine Davies, Kendi F. Deere, Nicolas J. Dodd, Michael Drinkwater, Rosie Driscoll, Don A. Dutilleux, Guillaume Dyrmann, Mads Edwards, David P. Farhadinia, Mohammad S. Faruk, Aisyah Field, Richard Fletcher, Robert J. Foster, Chris W. Fox, Richard Francksen, Richard M. Franco, Aldina M. A. Gainsbury, Alison M. Gardner, Charlie J. Giorgi, Ioanna Griffiths, Richard A. Hamaza, Salua Hanheide, Marc Hayward, Matt W. Hedblom, Marcus Helgason, Thorunn Heon, Sui P. Hughes, Kevin A. Hunt, Edmund R. Ingram, Daniel J. Jackson-Mills, George Jowett, Kelly Keitt, Timothy H. Kloepper, Laura N. Kramer-Schadt, Stephanie labisko, Jim labrosse, Frédéric Lawson, Jenna Lecomte, Nicolas de Lima, Ricardo F. Littlewood, Nick A. Marshall, Harry H. Masala, Giovanni L. Maskell, Lindsay C. Matechou, Eleni Mazzolai, Barbara McConnell, Alistair Melbourne, Brett A. Miriyev, Aslan Nana, Eric Djomo Ossola, Alessandro Papworth, Sarah Parr, Catherine L. Payo-Payo, Ana Perry, Gad Pettorelli, Nathalie Pillay, Rajeev Potts, Simon G. Prendergast-Miller, Miranda T. Qie, Lan Rolley-Parnell, Persie Rossiter, Stephen J. Rowcliffe, Marcus Rumble, Heather Sadler, Jon P. Sandom, Christopher J. Sanyal, Asiem Schrodt, Franziska Sethi, Sarab S. Shabrani, Adi Siddall, Robert Smith, Simón C. Snep, Robbert P. H. Soulsbury, Carl D. Stanley, Margaret C. Stephens, Philip A. Stephenson, P.J. Struebig, Matthew J. Studley, Matthew Svátek, Martin Tang, Gilbert Taylor, Nicholas K. Umbers, Kate D. L. Ward, Robert J. White, Patrick J. C. Whittingham, Mark J. Wich, Serge Williams, Christopher D. Yakubu, Ibrahim B. Yoh, Natalie Durrell Institute of Conservation and Ecology (DICE) School of Natural Sciences University of Kent Canterbury United Kingdom Centre for Environmental Policy Imperial College London London United Kingdom Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne United Kingdom School of Computing Engineering and the Built Environment Edinburgh Napier University Edinburgh United Kingdom Synthotech Ltd Milner Court Hornbeam Square Harrogate United Kingdom Mechanical Engineering Department University College London London United Kingdom HUTAN SWD Kota Kinabalu Malaysia Programa de Pós-Graduação em Gestão e Tecnologia Ambiental da Universidade Federal de Rondonópolis Rondonópolis Brazil Department of Engineering Harper Adams University Newport United Kingdom Applied Ecology Research Group School of Life Sciences Anglia Ruskin University Cambridge United Kingdom Centre for Ecology and Hydrology Penicuik United Kingdom Department of Life Sciences Imperial College London Silwood Park Campus Ascot United Kingdom Department of Urban and Regional Planning Faculty of Earth and Environmental Sciences Bayero University Kano Nigeria Greenhood Nepal Kathmandu Nepal Animal Rural & Environmental Sciences Nottingham Trent University Nottinghamshire United Kingdom School of Biological and Environmental Sciences Liverpool John Moores University Liverpool United Kingdom Lincoln Centre for Autonomous Systems University of Lincoln Lincoln United Kingdom Royal Botanic Garden Edinburgh Edinburgh United Kingdom School of Biological Sciences University of East Anglia Norwich Research Park Norwich United Kingdom Digital Ecology Limited Bristol United Kingdom School of Biological Sciences University of Bristol Bristol United Kingdom Department of Computing Imperial College London London United Kingdom Department of Ecology and Evolutionary Biology University of Colorado Boulder CO United States Faculty of Science Technology Engineering
With biodiversity loss escalating globally, a step change is needed in our capacity to accurately monitor species populations across ecosystems. Robotic and autonomous systems (RAS) offer technological solutions that ...
来源: 评论
Model based reinforcement learning for robot grasping trajectory generation  4
Model based reinforcement learning for robot grasping trajec...
收藏 引用
4th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2019
作者: Xue, Hongxiang Wen, Shuhuan Yang, Chao Liu, Huaping Key Lab of Industrial Computer Control Engineering of Hebei Province Yanshan University Qinhuangdao066004 China Department of Computer Science and Technology State Key Laboratory of Intelligent Technology and System Tsinghua National Laboratory for Information Science and Technology Tsinghua University Beijing100084 China
Trajectory generation is a fundamental problem for successful robotic grasping. However, most of the existing work dealt with this problem using supervised learning with a prescribed model. It prevents the developed g... 详细信息
来源: 评论
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Roy, Swalpa Kumar Paoletti, Mercedes E. Haut, Juan M. Dubey, Shiv Ram Kar, Purbayan Plaza, Antonio Chaudhuri, Bidyut B. The Computer Science and Engineering Alipurduar Government Engineering and Management College 736206 India The Hyperspectral Computing Laboratory Department of Technology of Computers and Communications University of Extremadura Cáceres10003 Spain The Computer Vision and Biometrics Lab Indian Institute of Information Technology Prayagraj Uttar Pradesh Allahabad211015 India The Media Analysis Group Sony Research India Private Limited Karnataka Bangalore560103 India The Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum... 详细信息
来源: 评论