咨询与建议

限定检索结果

文献类型

  • 32 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39 篇 工学
    • 17 篇 计算机科学与技术...
    • 15 篇 软件工程
    • 10 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 7 篇 机械工程
    • 6 篇 航空宇航科学与技...
    • 5 篇 光学工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 4 篇 生物工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 电气工程
    • 1 篇 交通运输工程
  • 19 篇 理学
    • 12 篇 数学
    • 6 篇 物理学
    • 4 篇 生物学
    • 3 篇 系统科学
  • 7 篇 管理学
    • 5 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...
  • 2 篇 军事学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 艺术学

主题

  • 5 篇 remote sensing
  • 3 篇 motion planning
  • 3 篇 face recognition
  • 3 篇 face
  • 3 篇 image processing
  • 3 篇 feature extracti...
  • 2 篇 lifting scheme
  • 2 篇 pattern recognit...
  • 2 篇 correlation
  • 2 篇 estimation
  • 2 篇 anisotropic diff...
  • 2 篇 on-board satelli...
  • 2 篇 lossless compres...
  • 1 篇 falling point tr...
  • 1 篇 image fusion
  • 1 篇 group activity r...
  • 1 篇 tandem
  • 1 篇 mass
  • 1 篇 partial differen...
  • 1 篇 deep space

机构

  • 3 篇 intelligent reco...
  • 3 篇 institute of ima...
  • 3 篇 college of life ...
  • 3 篇 shanghai jiao to...
  • 3 篇 institute for pa...
  • 2 篇 state education ...
  • 2 篇 school of comput...
  • 2 篇 laboratory of in...
  • 2 篇 state key lab. f...
  • 2 篇 inst. for patter...
  • 2 篇 hubei university...
  • 2 篇 institute for pa...
  • 2 篇 lab of intellige...
  • 1 篇 department of au...
  • 1 篇 school of biomed...
  • 1 篇 state key labora...
  • 1 篇 hangzhou innovat...
  • 1 篇 al lab. computer...
  • 1 篇 yatiris group pl...
  • 1 篇 the changchun ge...

作者

  • 7 篇 yunhong wang
  • 4 篇 cai chao
  • 4 篇 ding mingyue
  • 4 篇 tian jinwen
  • 4 篇 liu jian
  • 3 篇 zhaoxiang zhang
  • 3 篇 yang yang
  • 3 篇 shen hong-bin
  • 3 篇 wang yunhong
  • 3 篇 di huang
  • 3 篇 li shidong
  • 2 篇 chen gong
  • 2 篇 蔡超
  • 2 篇 张天序
  • 2 篇 丁名跃
  • 2 篇 jie yang
  • 2 篇 qingjie liu
  • 2 篇 jinwen tian
  • 2 篇 li dehua
  • 2 篇 huang di

语言

  • 47 篇 英文
检索条件"机构=Intelligent Recognition and Image Processing Lab"
47 条 记 录,以下是11-20 订阅
排序:
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Unsupervised Local Discrimination for Medical images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Huai Wang, Renzhen Wang, Xiuying Li, Jieyu Fang, Qu Li, Hui Bai, Jianhao Peng, Qing Meng, Deyu Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an710049 China The School of Computer Science The University of Sydney SydneyNSW2006 Australia Department of Ophthalmology Shanghai Tenth People’s Hospital Tongji University Shanghai200240 China The Cooperative Medianet Innovation Center Shanghai Jiao Tong University Shanghai200240 China The Changchun GeneScience Pharmaceutical Co. LTD China
Contrastive learning, which aims to capture general representation from unlabeled images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. C... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, labeled datasets ... 详细信息
来源: 评论
A novel panoramic image stitching algorithm based on ORB
A novel panoramic image stitching algorithm based on ORB
收藏 引用
2017 IEEE International Conference on Applied System Innovation, ICASI 2017
作者: Wang, Maosen Niu, Shaozhang Yang, Xuan Beijing Key Lab of Intelligent Telecommunication Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China Institute of Image Processing and Pattern Recognition North China University of Technology No.5 Jinyuanzhuang Road Shijingshan District Beijing China
image stitching technique is to integrate multiple images with overlapping regions into a complete image with a wide viewing angle, less distortion, and no obvious suture. image stitching could be used for global posi... 详细信息
来源: 评论
BUAA-iCC at imageCLEF 2015 scalable concept image annotation challenge  16
BUAA-iCC at ImageCLEF 2015 scalable concept image annotation...
收藏 引用
16th Conference and labs of the Evaluation Forum, CLEF 2015
作者: Wang, Yunhong Chen, Jiaxin Liu, Ningning Zhang, Li Intelligent Recognition and Image Processing Lab Beihang University Beijing100191 China School of Information Technology and Management University of International Business and Economics Beijing100029 China
In this working note, we mainly focus on the image annotation subtask of imageCLEF 2015 challenge that BUAA-iCC research group participated. For this task, we firstly explore textual similarity information between eac... 详细信息
来源: 评论
Binary pattern flavored feature extractors for Facial Expression recognition: An overview
Binary pattern flavored feature extractors for Facial Expres...
收藏 引用
Proceedings of the International Convention MIPRO
作者: Rasmus Lyngby Kristensen Zheng-Hua Tan Zhanyu Ma Jun Guo Section of Image Analysis and Computer Graphics Technical University of Denmark Kgs. Lyngby Denmark Signal and Information Processing section (SIP) Aalborg University Aalborg Denmark Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China
This paper conducts a survey of modern binary pattern flavored feature extractors applied to the Facial Expression recognition (FER) problem. In total, 26 different feature extractors are included, of which six are se... 详细信息
来源: 评论
Benchmarking asymmetric 3D-2D face recognition systems
Benchmarking asymmetric 3D-2D face recognition systems
收藏 引用
2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture recognition, FG 2013
作者: Zhao, Xi Zhang, Wuming Evangelopoulos, Georgios Huang, Di Shah, Shishir K. Wang, Yunhong Kakadiaris, Ioannis A. Chen, Liming Computational Biomedicine Lab Department of Computer Science University of Houston Houston TX 77204-3010 United States LIRIS Lab Ecole Centrale de Lyon 69134 cedex France Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University Beijing China
Asymmetric 3D-2D face recognition (FR) aims to recognize individuals from 2D face images using textured 3D face models in the gallery (or vice versa). This new FR scenario has the potential to be readily deployable in... 详细信息
来源: 评论
pNovo+: De Novo Peptide Sequencing and Assembly Using Complementary HCD and ETD Tandem Mass Spectra
pNovo+: De Novo Peptide Sequencing and Assembly Using Comple...
收藏 引用
第八届中国蛋白质组学大会
作者: Hao Chi Haifeng Chen Kun He Long Wu Bing Yang Rui-Xiang Sun Jianyun Liu Wen-Feng Zeng Chun-Qing Song Si-Min He Meng-Qiu Dong Key Lab of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China National Institute of Biological SciencesBeijingBeijing 102206China Laboratory of Intelligent Recognition and Image ProcessingBeijing Key Laboratory of Digital MediaBeihang UniversityBeijing100191China
来源: 评论
Benchmarking asymmetric 3D-2D face recognition systems
Benchmarking asymmetric 3D-2D face recognition systems
收藏 引用
International Conference on Automatic Face and Gesture recognition
作者: Xi Zhao Wuming Zhang Georgios Evangelopoulos Di Huang Shishir K. Shah Yunhong Wang Ioannis A. Kakadiaris Liming Chen Computational Biomedicine Lab Department of Computer Science University of Houston Houston TX USA LIRIS Lab Ecole Centrale de Lyon France Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University Beijing China
Asymmetric 3D-2D face recognition (FR) aims to recognize individuals from 2D face images using textured 3D face models in the gallery (or vice versa). This new FR scenario has the potential to be readily deployable in... 详细信息
来源: 评论