咨询与建议

限定检索结果

文献类型

  • 80 篇 会议
  • 64 篇 期刊文献

馆藏范围

  • 144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 40 篇 控制科学与工程
    • 40 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 21 篇 机械工程
    • 11 篇 生物工程
    • 8 篇 动力工程及工程热...
    • 8 篇 信息与通信工程
    • 7 篇 仪器科学与技术
    • 7 篇 冶金工程
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 6 篇 船舶与海洋工程
    • 5 篇 光学工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 电气工程
    • 4 篇 建筑学
  • 42 篇 理学
    • 19 篇 数学
    • 15 篇 物理学
    • 12 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 22 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 6 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 12 篇 robots
  • 5 篇 intelligent robo...
  • 5 篇 feature extracti...
  • 5 篇 pipelines
  • 5 篇 training
  • 4 篇 reinforcement le...
  • 4 篇 welding
  • 4 篇 three-dimensiona...
  • 4 篇 neural networks
  • 4 篇 navigation
  • 4 篇 robustness
  • 3 篇 simulation
  • 3 篇 task analysis
  • 3 篇 image segmentati...
  • 3 篇 kalman filters
  • 3 篇 mobile robots
  • 3 篇 computational mo...
  • 3 篇 actuators
  • 3 篇 machine learning
  • 3 篇 uncertainty

机构

  • 12 篇 college of machi...
  • 9 篇 institutes for r...
  • 6 篇 intelligent robo...
  • 5 篇 shenyang institu...
  • 5 篇 intelligent robo...
  • 5 篇 university of ch...
  • 4 篇 intelligent robo...
  • 3 篇 intelligent syst...
  • 3 篇 intelligent robo...
  • 3 篇 intelligent syst...
  • 3 篇 intelligent syst...
  • 3 篇 state key labora...
  • 3 篇 intelligent syst...
  • 2 篇 key laboratory o...
  • 2 篇 intelligent robo...
  • 2 篇 mcgill universit...
  • 2 篇 the intelligent ...
  • 2 篇 intelligent robo...
  • 2 篇 intelligent robo...
  • 2 篇 nanchang yanchan...

作者

  • 24 篇 kyrki ville
  • 15 篇 liu honghai
  • 13 篇 jiang guozhang
  • 13 篇 li gongfa
  • 10 篇 abu-dakka fares ...
  • 9 篇 ville kyrki
  • 7 篇 le tran nguyen
  • 7 篇 lundell jens
  • 6 篇 liu jia
  • 6 篇 paulo jefferson ...
  • 5 篇 chen disi
  • 5 篇 matheus m. dos s...
  • 4 篇 liu ze
  • 4 篇 ding weiliang
  • 4 篇 miao wei
  • 4 篇 ju zhaojie
  • 4 篇 fang yinfeng
  • 4 篇 li zhe
  • 3 篇 alcan gokhan
  • 3 篇 rodrigo zelir az...

语言

  • 141 篇 英文
  • 3 篇 其他
检索条件"机构=Intelligent Robotics and Automation Group"
144 条 记 录,以下是41-50 订阅
排序:
DDGC: Generative deep dexterous grasping in clutter
arXiv
收藏 引用
arXiv 2021年
作者: Lundell, Jens Verdoja, Francesco Kyrki, Ville Intelligent Robotics Group Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University Espoo02150 Finland
Recent advances in multi-fingered robotic grasping have enabled fast 6-Degrees-Of-Freedom (DOF) single object grasping. Multi-finger grasping in cluttered scenes, on the other hand, remains mostly unexplored due to th... 详细信息
来源: 评论
Active Visuo-Haptic Object Shape Completion
arXiv
收藏 引用
arXiv 2022年
作者: Rustler, Lukas Lundell, Jens Behrens, Jan Kristof Kyrki, Ville Hoffmann, Matej The Department of Cybernetics Faculty of Electrical Engineering CTU Prague Czech Republic The Intelligent Robotics Group Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University Espoo02150 Finland The Czech Institute of Informatics Robotics and Cybernetics CTU Prague Czech Republic
Recent advancements in object shape completion have enabled impressive object reconstructions using only visual input. However, due to self-occlusion, the reconstructions have high uncertainty in the occluded object p... 详细信息
来源: 评论
AI Enabled Automatic Mobile Robot intelligent Navigation in Construction with Obstacle Awareness
收藏 引用
IEEE Transactions on automation Science and Engineering 2025年
作者: Zhang, Yinlong Liu, Yuanhao Cui, Yunge Zeng, Ziming Liang, Wei Chinese Academy of Sciences State Key Laboratory of Robotics Shenyang Institute of Automation Shenyang110016 China Chinese Academy of Sciences Key Laboratory of Networked Control Systems Shenyang110016 China University of Chinese Academy of Sciences Beijing101408 China Zeekr Group Zeekr Intelligent Driving Department Shanghai110078 China Shenzhen Polytechnic University School of Automotive and Transportation Engineering Shenzhen518055 China
In the construction industry, the integration of artificial intelligence (AI) and robotics has led to significant advancements in automating various tasks. One critical aspect is the intelligent navigation of automati... 详细信息
来源: 评论
Constrained Generative Sampling of 6-DoF Grasps
arXiv
收藏 引用
arXiv 2023年
作者: Lundell, Jens Verdoja, Francesco Le, Tran Nguyen Mousavian, Arsalan Fox, Dieter Kyrki, Ville Intelligent Robotics Group Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University Finland KTH Royal Institute of Technology Sweden NVIDIA Corporation United States Paul G. Allen School of Computer Science & Engineering University of Washington Seattle United States
Most state-of-the-art data-driven grasp sampling methods propose stable and collision-free grasps uniformly on the target object. For bin-picking, executing any of those reachable grasps is sufficient. However, for co... 详细信息
来源: 评论
Hierarchical Whole-body Control of the cable-Suspended Aerial Manipulator endowed with Winch-based Actuation
Hierarchical Whole-body Control of the cable-Suspended Aeria...
收藏 引用
IEEE International Conference on robotics and automation (ICRA)
作者: Yuri S. Sarkisov Andre Coelho Maihara G. Santos Min Jun Kim Dzmitry Tsetserukou Christian Ott Konstantin Kondak Institute of Robotics and Mechatronics German Aerospace Center (DLR) Wessling Germany Robotics and Mechatronics Group University of Twente Enschede The Netherlands Dextrous Robotics Inc. Memphis United States Instituto Tecnológico de Aeronáutica São José dos Campos Brazil Intelligent Robotic Systems Lab Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea Automation and Control Institute TU Wien Vienna Austria
During operation, aerial manipulation systems are affected by various disturbances. Among them is a gravitational torque caused by the weight of the robotic arm. Common propeller-based actuation is ineffective against...
来源: 评论
Deterministic and Stochastic Analysis of Deep Reinforcement Learning for Low Dimensional Sensing-based Navigation of Mobile Robots
arXiv
收藏 引用
arXiv 2022年
作者: Grando, Ricardo B. de Jesus, Junior C. Kich, Victor A. Kolling, Alisson H. Guerra, Rodrigo S. Drews, Paulo L.J. The Technological University of Uruguay Uruguay NAUTEC - Intelligent Robotics and Automation Group Center for Computational Science Federal University of Rio Grande - FURG RS Brazil The Universidade Federal de Santa Maria - UFSM RS Brazil
Deterministic and Stochastic techniques in Deep Reinforcement Learning (Deep-RL) have become a promising solution to improve motion control and the decision-making tasks for a wide variety of robots. Previous works sh... 详细信息
来源: 评论
Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
arXiv
收藏 引用
arXiv 2024年
作者: Kruzliak, Andrej Hartvich, Jiri Patni, Shubhan P. Rustler, Lukas Behrens, Jan Kristof Abu-Dakka, Fares J. Mikolajczyk, Krystian Kyrki, Ville Hoffmann, Matej Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague Czech Republic Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Czech Republic Mechanical Engineering Department Faculty of Engineering New York University Abu Dhabi United Arab Emirates Department of Electrical and Electronic Engineering Imperial College London London United Kingdom Intelligent Robotics Group Department of Electrical Engineering and Automation School of Electrical Engineering Aalto University Finland
This work presents a framework for automatically extracting physical object properties, such as material composition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The ... 详细信息
来源: 评论
A biofuel risk management model for biomass-based heat sources considering supply-demand-side uncertainties
A biofuel risk management model for biomass-based heat sourc...
收藏 引用
12th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2022)
作者: D. Fu T. Zhou T. Yang T. Zhang J. Dong Key Laboratory of Networked Control Systems Institutes for Robotics and Intelligent Manufacturing Digital Factory Department Shenyang Institute of Automation Chinese Academy of Sciences Shenyang People's Republic of China Technical Management Division Guodian Technology & Environment Group Co Ltd. Beijing People's Republic of China Digital Factory Department Shenyang Institute of Automation Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang People's Republic of China
Biofuel-based heat sources are gradually penetrated into heating systems in Northern China in the background of carbon neutrality. It is essential to conduct biofuel risk management study, not only for enhancing the a...
来源: 评论
DROPO: Sim-to-Real Transfer with Offline Domain Randomization
arXiv
收藏 引用
arXiv 2022年
作者: Tiboni, Gabriele Arndt, Karol Kyrki, Ville Dept. of Control and Computer Engineering Politecnico di Torino Francesco Ferrucci Street 112 Torino10141 Italy Intelligent Robotics Group Dept. of Electrical Engineering and Automation Aalto University Maarintie 8 Espoo02150 Finland
In recent years, domain randomization over dynamics parameters has gained a lot of traction as a method for sim-to-real transfer of reinforcement learning policies in robotic manipulation;however, finding optimal rand... 详细信息
来源: 评论
Unsupervised Learning Method for Encoder-Decoder-Based Image Restoration  9th
Unsupervised Learning Method for Encoder-Decoder-Based Image...
收藏 引用
9th Brazilian Conference on intelligent Systems, BRACIS 2020
作者: Mello, Claudio D. Messias, Lucas R. V. Drews-Jr, Paulo Lilles Jorge Botelho, Silvia S. C. NAUTEC - Intelligent Robotics and Automation Group Center for Computational Science - C3 Federal University of Rio Grande - FURG Rio GrandeRS96.203-000 Brazil
The restoration of a corrupted image is a challenge to computer vision and image processing. In hazy, underwater and medical images, the lack of paired images lead the state of the art to synthesize datasets. The Gene... 详细信息
来源: 评论