咨询与建议

限定检索结果

文献类型

  • 149 篇 期刊文献
  • 135 篇 会议

馆藏范围

  • 284 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 工学
    • 117 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 55 篇 控制科学与工程
    • 46 篇 光学工程
    • 42 篇 生物工程
    • 40 篇 信息与通信工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 12 篇 机械工程
    • 12 篇 动力工程及工程热...
    • 11 篇 交通运输工程
    • 8 篇 化学工程与技术
    • 7 篇 力学(可授工学、理...
    • 7 篇 土木工程
    • 6 篇 建筑学
  • 115 篇 理学
    • 47 篇 数学
    • 46 篇 生物学
    • 41 篇 物理学
    • 16 篇 统计学(可授理学、...
    • 8 篇 化学
  • 37 篇 管理学
    • 21 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 24 篇 医学
    • 23 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 7 篇 法学
    • 7 篇 社会学
  • 7 篇 农学
  • 3 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 15 篇 cameras
  • 15 篇 intelligent robo...
  • 12 篇 robot sensing sy...
  • 12 篇 feature extracti...
  • 12 篇 computer vision
  • 11 篇 trajectory
  • 11 篇 robot vision sys...
  • 10 篇 computer science
  • 10 篇 image segmentati...
  • 9 篇 mobile robots
  • 8 篇 pixel
  • 8 篇 image edge detec...
  • 8 篇 robustness
  • 7 篇 object detection
  • 7 篇 robot kinematics
  • 7 篇 training
  • 6 篇 robots
  • 6 篇 system-on-chip
  • 6 篇 mathematics
  • 6 篇 field programmab...

机构

  • 14 篇 embedded vision ...
  • 7 篇 embedded vision ...
  • 7 篇 intelligent robo...
  • 7 篇 heidelberg
  • 6 篇 centre for medic...
  • 6 篇 department of co...
  • 6 篇 faculty of mathe...
  • 5 篇 department of qu...
  • 5 篇 computer vision ...
  • 5 篇 ihu strasbourg s...
  • 5 篇 shenzhen institu...
  • 5 篇 university of ch...
  • 5 篇 ural federal uni...
  • 4 篇 computer vision ...
  • 4 篇 heidelberg divis...
  • 4 篇 department of co...
  • 4 篇 intelligent robo...
  • 4 篇 heidelberg divis...
  • 4 篇 centre for intel...
  • 4 篇 fraunhofer mevis...

作者

  • 24 篇 kryjak tomasz
  • 9 篇 puig domenec
  • 7 篇 bakas spyridon
  • 7 篇 szolc hubert
  • 7 篇 domenec puig
  • 6 篇 reinke annika
  • 6 篇 ma jun
  • 6 篇 shen linlin
  • 6 篇 menze bjoern
  • 6 篇 blachut krzyszto...
  • 6 篇 vladimir popov
  • 6 篇 maier-hein lena
  • 6 篇 m.a. garcia
  • 5 篇 godau patrick
  • 5 篇 abdellah chehri
  • 5 篇 reyes mauricio
  • 5 篇 kofler florian
  • 5 篇 kyrki ville
  • 5 篇 eisenmann matthi...
  • 5 篇 garcia miguel an...

语言

  • 273 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Intelligent Robotics and Computer Vision Group/Department of Computer Science and Mathematics"
284 条 记 录,以下是211-220 订阅
排序:
Event-based particle filtering for robot self-localization
Event-based particle filtering for robot self-localization
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: David Weikersdorfer Jörg Conradt Department of Mathematics and Computer Science and part of the Intelligent Autonomous Systems Group Technical University Munich Germany Department of Electrical Engineering and head of the group Neuroscientific System Theory (NST) Technical University Munich Germany
We propose a novel algorithm for robot self-localization using an embedded event-based sensor. This sensor produces a stream of events at microsecond time resolution which only represents pixel-level illumination chan... 详细信息
来源: 评论
Using mobile relays in multi-robot exploration
Using mobile relays in multi-robot exploration
收藏 引用
2011 Australasian Conference on robotics and Automation
作者: De Hoog, Julian Cameron, Stephen Jiménez-González, Adrian De-Dios, J. Ramiro Martínez Ollero, Anibal Department of Computer Science University of Oxford United Kingdom Robotics Vision and Control Group University of Sevilla Spain
Many robotics tasks require autonomous exploration by teams of robots. In difficult or large environments, communication drop-out complicates this task. Several approaches exist that aim to keep the team connected, bu... 详细信息
来源: 评论
Supervised texture segmentation through a multi-level pixel-based classifier based on specifically designed filters
Supervised texture segmentation through a multi-level pixel-...
收藏 引用
IEEE International Conference on Image Processing
作者: Jaime Melendez Xavier Girones Domenec Puig Intelligent Robotics and Computer Vision Group Department of Computer Science and Mathematics Rovira i Virgili University Spain
This paper presents a new, efficient technique for supervised texture segmentation based on a set of specifically designed filters and a multi-level pixel-based classifier. Filter design is carried out by means of a n... 详细信息
来源: 评论
Multi-modal visual attention for robotics active vision systems - A reference architecture
Multi-modal visual attention for robotics active vision syst...
收藏 引用
AISB 2011 Symposium on Architectures for Active vision
作者: Hülse, Martin McBride, Sebastian Lee, Mark Department of Computer Science Intelligent Robotics Group Aberywtwyth University SY23 3DB United Kingdom
This work introduces an architecture for a robotic active vision system equipped with a manipulator that is able to integrate visual and non-visual (tactile) sensorimotor experiences. Inspired by the human vision syst... 详细信息
来源: 评论
Boosting Scalable Gradient Features for Adaptive Real-Time Tracking
Boosting Scalable Gradient Features for Adaptive Real-Time T...
收藏 引用
2011 IEEE International Conference on robotics and Automation(2011年IEEE世界机器人与自动化大会 ICRA 2011)
作者: Dominik A. Klein Armin B. Cremers Intelligent Vision Systems Group Department of Computer Science IIIRheinische Friedrich-Wilhelms-Universit(a)t Bonn53117 BonnGermany
Recently, several image gradient and edge based features have been introduced. In unison, they all discovered that object shape is a strong cue for recognition and tracking. Generally their basic feature extraction re... 详细信息
来源: 评论
An accurate 3D feature tracking system with wide-baseline stereo smart cameras
An accurate 3D feature tracking system with wide-baseline st...
收藏 引用
ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC
作者: Dominik Rueß Kristian Manthey Ralf Reulke German AeroSpace Center Optical Information Systems Institute of Robotics and Mechatronics Berlin Germany Department of Computer Science Research and Lecture Group Computer Vision Humboldt-Universität zu Berlin Berlin Germany
A typical video surveillance system consists of at least one camera, controlled by an operator. To decrease the human error rate and to generally lessen the burden of operators, many object tracking systems have been ... 详细信息
来源: 评论
Reports of the AAAI 2010 fall symposia
Reports of the AAAI 2010 fall symposia
收藏 引用
作者: Azevedo, Roger Biswas, Gautam Bohus, Dan Carmichael, Ted Finlayson, Mark A. Hadzikadic, Mirsad Havasi, Catherine Horvitz, Eric Kanda, Takayuki Koyejo, Oluwasanmi Lawless, William F. Lenat, Doug Meneguzzi, Felipe Mutlu, Bilge Oh, Jean Pirrone, Roberto Raux, Antoine Sofge, Donald A. Sukthankar, Gita Van Durme, Benjamin Yorke-Smith, Neil Department of Educational and Counseling Psychology McGill University Canada Center for Intelligent Systems Vanderbilt University United States Microsoft Research Redmond United States Department of Software and Information Systems University of North Carolina Charlotte United States Complex Systems Institute United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States Media Lab. Massachusetts Institute of Technology United States ATR Intelligent Robotics and Communication Laboratories Kyoto Japan Department of Electrical and Computer Engineering University of Texas Austin United States Department of Mathematics Paine College Augusta GA United States Cycorp Austin TX United States Robotics Institute Carnegie Mellon University United States Department of Computer Sciences University of Wisconsin Madison United States University of Palermo Italy Honda Research Institute United States Navy Center for Applied Research in Artificial Intelligence Naval Research Laboratory Washington DC United States Department of Electrical Engineering and Computer Science University of Central Florida United States Department of Computer Science Johns Hopkins University United States American University of Beirut Lebanon SRI International's Artificial Intelligence Center United States
The Association for the Advancement of Artificial Intelligence (AAAI) presented the 2010 Fall Symposium Series on November 11-13, 2010. The eight symposia included Cognitive and Metacognitive Educational Systems, Comm... 详细信息
来源: 评论
The logic of robotics inspired biology
The logic of robotics inspired biology
收藏 引用
International Symposium on AI Inspired Biology, AIIB 2010 - A Symposium at the AISB 2010 Convention
作者: Hülse, Martin Lee, Mark Intelligent Robotics Group Department of Computer Science Aberywtwyth University SY23 3DB United Kingdom
Biologically inspired robotics is a well known approach for the design of autonomous intelligent robot systems. Very often it is assumed that biologically inspired models successfully implemented on robots offer new s... 详细信息
来源: 评论
On adapting pixel-based classification to unsupervised texture segmentation
On adapting pixel-based classification to unsupervised textu...
收藏 引用
2010 20th International Conference on Pattern Recognition, ICPR 2010
作者: Melendez, Jaime Puig, Domenec Angel Garcia, Miguel Intelligent Robotics and Computer Vision Group Rovira I Virgili University Dept. of Computer Science and Mathematics Av. Paisos Catalans 26 43007 Tarragona Spain Autonomous University of Madrid Dept. of Informatics Engineering Francisco Tomas y Valiente 11 28049 Madrid Spain
An inherent problem of unsupervised texture segmentation is the absence of previous knowledge regarding the texture patterns present in the images to be segmented. A new efficient methodology for unsupervised image se... 详细信息
来源: 评论
Robust color image segmentation through tensor voting
Robust color image segmentation through tensor voting
收藏 引用
International Conference on Pattern Recognition
作者: Moreno, Rodrigo Garcia, Miguel Angel Puig, Domenec Rovira I Virgili University Intelligent Robotics and Computer Vision Group Dept. of Computer Science and Mathematics Av. Països Catalans 26 43007 Tarragona Spain Autonomous University of Madrid Dept. of Informatics Engineering Francisco Tomas y Valiente 11 28049 Madrid Spain
This paper presents a new method for robust color image segmentation based on tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. First, an adaptation of tensor v... 详细信息
来源: 评论