咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 135 篇 会议
  • 4 册 图书

馆藏范围

  • 293 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 118 篇 计算机科学与技术...
    • 103 篇 软件工程
    • 56 篇 控制科学与工程
    • 47 篇 光学工程
    • 43 篇 生物工程
    • 40 篇 信息与通信工程
    • 33 篇 生物医学工程(可授...
    • 20 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 13 篇 机械工程
    • 13 篇 仪器科学与技术
    • 12 篇 动力工程及工程热...
    • 12 篇 交通运输工程
    • 8 篇 力学(可授工学、理...
    • 8 篇 化学工程与技术
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
  • 117 篇 理学
    • 48 篇 生物学
    • 47 篇 数学
    • 42 篇 物理学
    • 16 篇 统计学(可授理学、...
    • 8 篇 化学
  • 37 篇 管理学
    • 21 篇 图书情报与档案管...
    • 18 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 24 篇 医学
    • 23 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 8 篇 农学
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 15 篇 cameras
  • 15 篇 intelligent robo...
  • 12 篇 robot sensing sy...
  • 12 篇 feature extracti...
  • 12 篇 computer vision
  • 11 篇 trajectory
  • 11 篇 robot vision sys...
  • 10 篇 computer science
  • 10 篇 image segmentati...
  • 9 篇 mobile robots
  • 8 篇 pixel
  • 8 篇 image edge detec...
  • 8 篇 robustness
  • 7 篇 object detection
  • 7 篇 artificial intel...
  • 7 篇 robot kinematics
  • 7 篇 training
  • 6 篇 deep learning
  • 6 篇 robots
  • 6 篇 system-on-chip

机构

  • 14 篇 embedded vision ...
  • 7 篇 embedded vision ...
  • 7 篇 intelligent robo...
  • 7 篇 heidelberg
  • 6 篇 centre for medic...
  • 6 篇 department of co...
  • 6 篇 faculty of mathe...
  • 5 篇 department of qu...
  • 5 篇 computer vision ...
  • 5 篇 ihu strasbourg s...
  • 5 篇 shenzhen institu...
  • 5 篇 university of ch...
  • 5 篇 ural federal uni...
  • 4 篇 computer vision ...
  • 4 篇 heidelberg divis...
  • 4 篇 department of co...
  • 4 篇 intelligent robo...
  • 4 篇 heidelberg divis...
  • 4 篇 centre for intel...
  • 4 篇 fraunhofer mevis...

作者

  • 24 篇 kryjak tomasz
  • 9 篇 puig domenec
  • 7 篇 bakas spyridon
  • 7 篇 szolc hubert
  • 7 篇 domenec puig
  • 6 篇 reinke annika
  • 6 篇 ma jun
  • 6 篇 shen linlin
  • 6 篇 menze bjoern
  • 6 篇 blachut krzyszto...
  • 6 篇 vladimir popov
  • 6 篇 maier-hein lena
  • 6 篇 m.a. garcia
  • 5 篇 godau patrick
  • 5 篇 abdellah chehri
  • 5 篇 reyes mauricio
  • 5 篇 kofler florian
  • 5 篇 kyrki ville
  • 5 篇 eisenmann matthi...
  • 5 篇 garcia miguel an...

语言

  • 282 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Intelligent Robotics and Computer Vision Group/Department of Computer Science and Mathematics"
293 条 记 录,以下是221-230 订阅
排序:
Scientific and Technological Challenges in RoboCup
收藏 引用
Control, robotics, and Autonomous Systems 1000年 第1期3卷 441-471页
作者: Minoru Asada Oskar von Stryk 1Symbiotic Intelligent Systems Research Center Institute for Open and Transdisciplinary Research Initiatives Osaka University Suita Osaka 565-0871 Japan email: asada@otri.osaka-u.ac.jp 2Simulation Systems Optimization and Robotics Group Department of Computer Science Technische Universität Darmstadt D-64289 Darmstadt Germany
Since its inception in 1997, RoboCup has developed into a truly unique and long-standing research community advancing robotics and artificial intelligence through various challenges, benchmarks, and test fields. The m...
来源: 评论
Line Drawing Guided Progressive Inpainting of Mural Damage
arXiv
收藏 引用
arXiv 2022年
作者: Li, Luxi Zou, Qin Zhang, Fan Yu, Hongkai Chen, Long Song, Chengfang Huang, Xianfeng Wang, Xiaoguang Li, Qingquan Department of Computer Science Technology United International College of Beijing Normal University HongKong Baptist University Zhuhai China Machine Vision and Robotics Laboratory School of Computer Science Wuhan University Wuhan China State Key Laboratory of Surveying Mapping and Remote Sensing Information Engineering Wuhan University Wuhan China Department of Electrical Engineering and Computer Science Cleveland State University OH United States Institute of Automation Chinese Academy of Sciences Beijing China Cultural Heritage Intelligent Computing Laboratory Wuhan University Wuhan China Guangming Laboratory Shenzhen University Shenzhen China
Mural image inpainting is far less explored compared to its natural image counterpart and remains largely unsolved. Most existing image-inpainting methods tend to take the target image as the only input and directly r... 详细信息
来源: 评论
Dynamic process initial conditions in repetitive processes. Controllability and stability analysis
Dynamic process initial conditions in repetitive processes. ...
收藏 引用
Information, Decision and Control (IDC)
作者: K. Galkowski E. Rogers A. Gramacki J. Gramacki D.H. Owens Institute of Robotics and Software Engineering Technical University of Zielona Góra Zielona Gora Poland Department of Electronics and Computer Science Image Speech and Intelligent Systems Research Group University of Southampton Southampton UK Institute of Computer Engineering and Electronics Technical University of Zielona Góra Zielona Gora Poland School of Engineering Centre for Systems and Control Engineering University of Exeter Exeter UK
Repetitive, or multipass, processes are a class of 2D systems of both practical and algorithmic/theoretical interest whose dynamics cannot be analysed or controlled using standard (1D) systems theory. Recently it has ... 详细信息
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Convolutional Neural Networks for Automatic Meter Reading
arXiv
收藏 引用
arXiv 2019年
作者: Laroca, Rayson Barroso, Victor Diniz, Matheus A. Gonçalves, Gabriel R. Schwartz, William Robson Menotti, David Federal University of Paraná Laboratory of Vision Robotics and Imaging Department of Informatics Av. Coronel Francisco Heráclito dos Santos 100 Curitiba81530-000 Brazil Federal University of Minas Gerais Smart Surveillance Interest Group Department of Computer Science Av. Antônio Carlos 6627 Belo Horizonte31270-010 Brazil
In this paper, we tackle Automatic Meter Reading (AMR) by leveraging the high capability of Convolutional Neural Networks (CNNs). We design a two-stage approach that employs the Fast-YOLO object detector for counter d... 详细信息
来源: 评论
Automatic classification of breast tissue according BIRADS categories using a clustering approach
收藏 引用
International Congress Series 2005年 1281卷 1399-1399页
作者: A. Oliver J. Martí J. Freixenet J. Pont R. Zwiggelaar Computer Vision and Robotics Group University of Girona Spain University Hospital Doctor Josep Trueta Girona Spain Department of Computer Science University of Aberystwyth UK
来源: 评论
Hydrone: Modeling of a Hybrid Unmanned Aerial Underwater Vehicle Considering Trans-Media Dynamics
SSRN
收藏 引用
SSRN 2024年
作者: de Oliveira Evald, Paulo Jefferson Dias Brião, Stephanie Loi Aoki, Vivian Misaki da Silva, César Bastos dos Santos Cardoso, Dayana Pinheiro, Pedro Miranda de Oliveira, Felipe Gomes André Barbosa Cunha, Mauro Jorge Drews, Paulo Lilles Intelligent Systems and Control Group Federal University of Pelotas RS Pelotas Brazil Intelligent Robotics and Automation Group Federal University of Rio Grande RS Rio Grande Brazil Department of Computer Engineering and Industrial Automation State University of Campinas SP Campinas Brazil Federal Institute of Education Science and Technology in Rio Grande do Sul RS Pelotas Brazil Institute of Exact Sciences and Technology Federal University of Amazonas Itacoatiara AM Amazonas Brazil Brazil
Research in mobile robotics is growing into applications for difficult-to-access environments, such as in rescue and transport missions. Furthermore, autonomous vehicles can perform data collection in complex approach... 详细信息
来源: 评论
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
Learning offline: Memory replay in biological and artificial reinforcement learning
arXiv
收藏 引用
arXiv 2021年
作者: Roscow, Emma L. Chua, Raymond Costa, Rui Ponte Jones, Matt W. Lepora, Nathan Centre de Recerca Matemàtica Bellaterra Spain McGill University and Mila Montréal Canada Bristol Computational Neuroscience Unit Intelligent Systems Lab Department of Computer Science University of Bristol United Kingdom School of Physiology Pharmacology and Neuroscience University of Bristol Bristol United Kingdom Department of Engineering Mathematics Bristol Robotics Laboratory University of Bristol Bristol United Kingdom
Learning to act in an environment to maximise rewards is among the brain’s key functions. This process has often been conceptualised within the framework of reinforcement learning, which has also gained prominence in... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论