咨询与建议

限定检索结果

文献类型

  • 383 篇 会议
  • 195 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 580 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 166 篇 控制科学与工程
    • 165 篇 计算机科学与技术...
    • 145 篇 软件工程
    • 64 篇 机械工程
    • 52 篇 仪器科学与技术
    • 52 篇 生物工程
    • 51 篇 生物医学工程(可授...
    • 39 篇 信息与通信工程
    • 27 篇 电气工程
    • 23 篇 力学(可授工学、理...
    • 22 篇 光学工程
    • 18 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 12 篇 材料科学与工程(可...
    • 12 篇 电子科学与技术(可...
    • 11 篇 动力工程及工程热...
    • 11 篇 安全科学与工程
    • 10 篇 土木工程
    • 9 篇 建筑学
  • 170 篇 理学
    • 71 篇 数学
    • 56 篇 物理学
    • 49 篇 生物学
    • 25 篇 统计学(可授理学、...
    • 23 篇 系统科学
    • 18 篇 化学
  • 42 篇 医学
    • 39 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 42 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 17 篇 图书情报与档案管...
  • 7 篇 法学
  • 5 篇 农学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 33 篇 robot sensing sy...
  • 30 篇 intelligent robo...
  • 29 篇 robots
  • 27 篇 mobile robots
  • 20 篇 trajectory
  • 18 篇 legged locomotio...
  • 16 篇 cameras
  • 15 篇 neural networks
  • 15 篇 navigation
  • 13 篇 control systems
  • 13 篇 robustness
  • 13 篇 training
  • 12 篇 feature extracti...
  • 12 篇 mathematical mod...
  • 11 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 target tracking
  • 11 篇 robot kinematics
  • 10 篇 motion planning
  • 10 篇 force

机构

  • 38 篇 guangdong provin...
  • 26 篇 university of ch...
  • 23 篇 machine learning...
  • 21 篇 shenzhen college...
  • 21 篇 guangdong provin...
  • 15 篇 cas key laborato...
  • 12 篇 shenzhen institu...
  • 11 篇 advanced robotic...
  • 9 篇 spinal cord inju...
  • 9 篇 shenzhen institu...
  • 9 篇 idea lab univers...
  • 9 篇 sensory-motor sy...
  • 8 篇 cas key laborato...
  • 8 篇 learning and int...
  • 8 篇 guangdong-hong k...
  • 7 篇 colorado school ...
  • 7 篇 learning and int...
  • 7 篇 shenzhen institu...
  • 7 篇 hocoma ag volket...
  • 6 篇 mobile health sy...

作者

  • 43 篇 wu xinyu
  • 26 篇 toussaint marc
  • 21 篇 xinyu wu
  • 21 篇 robert riener
  • 19 篇 s.x. yang
  • 14 篇 mainprice jim
  • 13 篇 wang can
  • 11 篇 marc toussaint
  • 10 篇 feng wei
  • 10 篇 salvador pané
  • 10 篇 chen chunjie
  • 9 篇 jonas buchli
  • 8 篇 roland siegwart
  • 8 篇 riener robert
  • 8 篇 oguz ozgur s.
  • 8 篇 schaal stefan
  • 8 篇 zhang xiaoli
  • 8 篇 buchli jonas
  • 7 篇 zhang jiucai
  • 7 篇 bradley j. nelso...

语言

  • 566 篇 英文
  • 11 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Intelligent Robotics and Systems Lab"
580 条 记 录,以下是111-120 订阅
排序:
PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Dingkang Wei, Jinjie Xiao, Dongling Wang, Shunli Wu, Tong Li, Gang Li, Mingcheng Wang, Shuaibing Chen, Jiawei Jiang, Yue Xu, Qingyao Li, Ke Zhai, Peng Zhang, Lihua Academy for Engineering and Technology Fudan University Shanghai China Tencent Youtu Lab Shanghai China Cognition and Intelligent Technology Laboratory Shanghai China Engineering Research Center of AI and Robotics Ministry of Education Shanghai China AI and Unmanned Systems Engineering Research Center of Jilin Province Changchun China
Developing intelligent pediatric consultation systems offers promising prospects for improving diagnostic efficiency, especially in China, where healthcare resources are scarce. Despite recent advances in Large Langua... 详细信息
来源: 评论
Marker or Markerless? Mode-Switchable Optical Tactile Sensing for Diverse Robot Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Ou, Ni Chen, Zhuo Luo, Shan The State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing Institute of Technology Beijing100081 China The Robot Perception Lab. Centre for Robotics Research Department of Engineering King’s College London LondonWC2R 2LS United Kingdom
Optical tactile sensors play a pivotal role in robot perception and manipulation tasks. The membrane of these sensors can be painted with markers or remain markerless, enabling them to function in either marker or mar... 详细信息
来源: 评论
Detecting and Evaluating Medical Hallucinations in Large Vision Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Jiawei Yang, Dingkang Wu, Tong Jiang, Yue Hou, Xiaolu Li, Mingcheng Wang, Shunli Xiao, Dongling Li, Ke Zhang, Lihua Academy for Engineering and Technology Fudan University Shanghai China Tencent Youtu Lab Shanghai China Cognition and Intelligent Technology Laboratory Shanghai China Engineering Research Center of AI and Robotics Ministry of Education Shanghai China AI and Unmanned Systems Engineering Research Center of Jilin Province Changchun China
Large Vision Language Models (LVLMs) are increasingly integral to healthcare applications, including medical visual question answering and imaging report generation. While these models inherit the robust capabilities ... 详细信息
来源: 评论
6DoF-ICTC: A Deep Image Feature Extraction Network Combining Transformers and CNNs for 6DoF Pose Estimation  12
6DoF-ICTC: A Deep Image Feature Extraction Network Combining...
收藏 引用
12th International Conference on CYBER Technology in Automation, Control, and intelligent systems, CYBER 2022
作者: Zhang, Liming Zhou, Xin Zhu, Baixian Wang, Can Wu, Xinyu Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology China University of Science and Technology of China China Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong
In this work, we propose a new image feature extraction network for 6D pose estimation tasks. The majority of existing 6D pose estimation networks are based on the RGBD input, which is the fusion of images and point c... 详细信息
来源: 评论
Plan-based relaxed reward shaping for goal-directed tasks
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement Learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Uncovering the Interpretation of Large Language Models
Uncovering the Interpretation of Large Language Models
收藏 引用
IEEE Annual International Computer Software and Applications Conference (COMPSAC)
作者: Mst Shapna Akter Hossain Shahriar Alfredo Cuzzocrea Fan Wu Dept. of Intelligent and Robotics Systems University of West Florida USA Center for Cyberxecurity University of West Florida USA iDEA Lab University of Calabria Rende Italy Dept. of Computer Science University of Paris City Paris France Dept. of Computer Science Tuskegee University Tuskegee USA
Recent research has shown growing interest in the arithmetic reasoning capabilities of large language models (LLMs), especially those built on the Transformer architecture. However, our understanding of the intrinsic ... 详细信息
来源: 评论
Quantum Adversarial Attacks: Developing Quantum FGSM Algorithm
Quantum Adversarial Attacks: Developing Quantum FGSM Algorit...
收藏 引用
IEEE Annual International Computer Software and Applications Conference (COMPSAC)
作者: Mst Shapna Akter Hossain Shahriar Alfredo Cuzzocrea Fan Wu Dept. of Intelligent and Robotics Systems University of West Florida USA Center for CyberSecurity University of West Florida USA iDEA Lab University of Calabria Rende Italy Dept. of Computer Science University of Paris City Paris France Dept. of Computer Science Tuskegee University Tuskegee USA
Quantum machine learning, noted for its remarkable advancements in enhancing computational speed and augmenting data processing efficacy, is acquiring considerable recognition within the scientific community. Despite ... 详细信息
来源: 评论
The Stiffness of 3-PRS PM Across Parasitic and Orientational Workspace
The Stiffness of 3-PRS PM Across Parasitic and Orientational...
收藏 引用
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR
作者: Hassen Nigatu Li Jihao Keqi Zhu Junhan Zhang Haotian Guo Guodong Lu Doik Kim Robot Perception and Grasp Lab School of Mechanical Engineering Zhejiang University Hangzhou China Robotics Research Center of Yuyao Yuyao Technology Innovation Center Robotics Institute of Zhejiang University Ningbo Shi Zhejiang Province China The State Key Laboratory of Fluid Power and Mechatronic Systems and the Engineering Research Center for Design Engineering and Digital Twin of Zhejiang Province School of Mechanical Engineering School of Mechanical Engineering Zhejiang University Hangzhou China xR Lab Center for Intelligent and Interactive Robotics Artificial Intelligence and Robot Institute Korea Institute of Science and Technology (KIST) South Korea
This study investigates the stiffness characteristics of the Sprint Z3 head, also known as 3- PRS Parallel Kinematics Machines, which are among the most extensively researched and viably successful manipulators for pr... 详细信息
来源: 评论
Learning to arbitrate human and robot control using disagreement between sub-policies
arXiv
收藏 引用
arXiv 2021年
作者: Oh, Yoojin Toussaint, Marc Mainprice, Jim Machine Learning and Robotics Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Berlin Germany Max Planck Institute for Intelligent Systems MPI-IS Tübingen/Stuttgart Germany
In the context of teleoperation, arbitration refers to deciding how to blend between human and autonomous robot commands. We present a reinforcement learning solution that learns an optimal arbitration strategy that a... 详细信息
来源: 评论
Deep 6-DoF tracking of unknown objects for reactive grasping
arXiv
收藏 引用
arXiv 2021年
作者: Tuscher, Marc Hörz, Julian Driess, Danny Toussaint, Marc Sereact Germany Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems TU Berlin Germany
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论