咨询与建议

限定检索结果

文献类型

  • 384 篇 会议
  • 196 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 582 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 347 篇 工学
    • 168 篇 控制科学与工程
    • 167 篇 计算机科学与技术...
    • 147 篇 软件工程
    • 64 篇 机械工程
    • 52 篇 仪器科学与技术
    • 52 篇 生物医学工程(可授...
    • 52 篇 生物工程
    • 39 篇 信息与通信工程
    • 27 篇 电气工程
    • 23 篇 力学(可授工学、理...
    • 22 篇 光学工程
    • 18 篇 化学工程与技术
    • 15 篇 交通运输工程
    • 12 篇 材料科学与工程(可...
    • 12 篇 电子科学与技术(可...
    • 11 篇 动力工程及工程热...
    • 11 篇 安全科学与工程
    • 10 篇 土木工程
    • 9 篇 建筑学
  • 172 篇 理学
    • 72 篇 数学
    • 56 篇 物理学
    • 50 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 23 篇 系统科学
    • 18 篇 化学
  • 42 篇 医学
    • 39 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 42 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 17 篇 图书情报与档案管...
  • 7 篇 法学
  • 6 篇 农学
  • 3 篇 教育学
  • 2 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 33 篇 robot sensing sy...
  • 30 篇 intelligent robo...
  • 29 篇 robots
  • 27 篇 mobile robots
  • 20 篇 trajectory
  • 18 篇 legged locomotio...
  • 16 篇 cameras
  • 15 篇 neural networks
  • 15 篇 navigation
  • 13 篇 control systems
  • 13 篇 robustness
  • 13 篇 training
  • 12 篇 feature extracti...
  • 12 篇 mathematical mod...
  • 11 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 target tracking
  • 11 篇 robot kinematics
  • 10 篇 motion planning
  • 10 篇 force

机构

  • 38 篇 guangdong provin...
  • 26 篇 university of ch...
  • 23 篇 machine learning...
  • 21 篇 shenzhen college...
  • 21 篇 guangdong provin...
  • 15 篇 cas key laborato...
  • 12 篇 shenzhen institu...
  • 11 篇 advanced robotic...
  • 9 篇 spinal cord inju...
  • 9 篇 shenzhen institu...
  • 9 篇 idea lab univers...
  • 9 篇 sensory-motor sy...
  • 8 篇 cas key laborato...
  • 8 篇 learning and int...
  • 8 篇 guangdong-hong k...
  • 7 篇 colorado school ...
  • 7 篇 learning and int...
  • 7 篇 shenzhen institu...
  • 7 篇 hocoma ag volket...
  • 6 篇 mobile health sy...

作者

  • 43 篇 wu xinyu
  • 26 篇 toussaint marc
  • 21 篇 xinyu wu
  • 21 篇 robert riener
  • 19 篇 s.x. yang
  • 14 篇 mainprice jim
  • 13 篇 wang can
  • 11 篇 marc toussaint
  • 10 篇 feng wei
  • 10 篇 salvador pané
  • 10 篇 chen chunjie
  • 9 篇 jonas buchli
  • 8 篇 roland siegwart
  • 8 篇 riener robert
  • 8 篇 oguz ozgur s.
  • 8 篇 schaal stefan
  • 8 篇 zhang xiaoli
  • 8 篇 buchli jonas
  • 7 篇 zhang jiucai
  • 7 篇 bradley j. nelso...

语言

  • 558 篇 英文
  • 21 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Intelligent Robotics and Systems Lab"
582 条 记 录,以下是281-290 订阅
排序:
Infrastructure-free Multi-robot Localization with Ultrawideband Sensors
Infrastructure-free Multi-robot Localization with Ultrawideb...
收藏 引用
American Control Conference
作者: Samet Guler Mohamed Abdelkader Jeff S. Shamma Computer Electrical and Mathematical Science and Engineering Division (CEMSE) KAUST Robotics Intelligent Systems and Control (RISC) Lab Thuwal 23955-6900 Saudi Arabia
Swarm applications use motion capture system or GPS sensors as localization systems. However, motion capture systems provide local solutions, and GPS sensors are not reliable in occluded environments. For reliable and... 详细信息
来源: 评论
Mesoscopic magnetic systems: From fundamental properties to devices
arXiv
收藏 引用
arXiv 2021年
作者: Heyderman, Laura J. Grollier, Julie Marrows, Christopher H. Vavassori, Paolo Grundler, Dirk Makarov, Denys Pané, Salvador Laboratory for Mesoscopic Systems Department of Materials ETH Zurich Zurich8093 Switzerland Laboratory for Multiscale Materials Experiments Paul Scherrer Institute Villigen PSI5232 Switzerland Unité Mixte de Physique CNRS Thales Université Paris-Saclay Palaiseau91767 France School of Physics & Astronomy University of Leeds LeedsLS2 9JT United Kingdom CIC nanoGUNE BRTA 20018 San Sebastian IKERBASQUE Basque Foundation for Science Bilbao48009 Spain Lausanne1015 Switzerland Helmholtz-Zentrum Dresden-Rossendorf e.V. Institute of Ion Beam Physics and Materials Research Dresden01328 Germany Multi-Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zürich Tannenstrasse 3 ZürichCH 8092 Switzerland
来源: 评论
Real-world Robot Reaching Skill Learning Based on Deep Reinforcement Learning
Real-world Robot Reaching Skill Learning Based on Deep Reinf...
收藏 引用
第32届中国控制与决策会议
作者: Naijun Liu Tao Lu Yinghao Cai Rui Wang Shuo Wang State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology of the Chinese Academy of Sciences
Traditional programming method can achieve certain manipulation tasks with the assumption that robot environment is known and ***,with robots gradually applied in more domains,robots often encounter working scenes whi... 详细信息
来源: 评论
Obstacle avoidance with reinforcement learning and adaptive resonance theory
Obstacle avoidance with reinforcement learning and adaptive ...
收藏 引用
2019 IEEE International Conference on robotics and Biomimetics, ROBIO 2019
作者: Ye, Lingjian Zhou, Yimin Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Shenzhen518055 China Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Shenzhen China
The reinforcement learning (RL) of the autonomous mobile agent is one of the actual research topics. It permits mobile agents to interact constantly with their environment and to avoid obstacles. First, this paper pre... 详细信息
来源: 评论
A Novel Multi-scale Fourier Descriptor Based on Plane Orthogonal Vectors for Fast Shape Retrieval
A Novel Multi-scale Fourier Descriptor Based on Plane Orthog...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Jiajun Ma Jiafeng Zhu Guoyuan Liang Xinyu Wu Guangdong Provincial Key Lab of Robotics and Intelligent System & CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Chinese Academy of Sciences Shenzhen China
Shape retrieval is an interesting and challenging issue in computer vision and robot vision. The recent works employing Fourier-based multi-scale descriptors achieve some success in shape retrieval, especially make re...
来源: 评论
A method of cliff detection in robot navigation based on multi-sensor
A method of cliff detection in robot navigation based on mul...
收藏 引用
IEEE International Conference on Real-time Computing and robotics (RCAR)
作者: Zhilong Su Can Wang Yuxiao Li Xinyu Wu Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China CAS Key Laboratory of Human-Machine Intelligence Synergic Systems Shenzhen Institutes of Advanced Technolog Shenzhen China Shenzhen College of Advanced Technology University of Chinese Academy of Sciences Beijing China
This paper proposed a method to detect cliff edge by using an RGB-D camera, and then to fuse the cliff information with LiDAR, finally to provide navigation information for robot autonomous exploration and autonomous ... 详细信息
来源: 评论
Trajectory-based off-policy deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Doerr, Andreas Volpp, Michael Toussaint, Marc Trimpe, Sebastian Daniel, Christian Bosch Center for Artificial Intelligence Renningen Germany Max Planck Institute for Intelligent Systems Stuttgart/Tubingen Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient es... 详细信息
来源: 评论
Low Light Enhancement by Unsupervised Network*
Low Light Enhancement by Unsupervised Network*
收藏 引用
IEEE International Conference on Real-time Computing and robotics (RCAR)
作者: Yangyang Qu Yongsheng Ou Rong Xiong Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Shenzhen China University of Chinese Academy of Sciences Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China CAS Key Laboratory of Human-Machine Intelligence Synergic Systems Shenzhen Institutes of Advanced Technology Shenzhen China
This paper focuses on unsupervised low-light enhancement methods for practical applications such as automated driving, surveillance cameras, and so on. This paper proposes an unsupervised method that is independent of... 详细信息
来源: 评论
A method for generating large-scale high definition color-point map
A method for generating large-scale high definition color-po...
收藏 引用
2019 IEEE International Conference on Real-Time Computing and robotics, RCAR 2019
作者: Li, Yuxiao Wang, Can Chen, Fan Su, Zhilong Wu, Xinyu Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China CAS Key Laboratory of Human-Machine Intelligence Synergic Systems Shenzhen Institutes of Advanced Technolog Shenzhen518055 China Shenzhen College of Advanced Technology University of Chinese Academy of Sciences Beijing100049 China
We propose a method to reconstruct a High-Definition Color-Pointed map from the large-scale urban road scene. In contrast to prior methods, we collect the urban road data under the severe traffic conditions and severa... 详细信息
来源: 评论
Low illumination enhancement for object detection in self-driving
Low illumination enhancement for object detection in self-dr...
收藏 引用
2019 IEEE International Conference on robotics and Biomimetics, ROBIO 2019
作者: Qu, Yangyang Ou, Yongsheng Xiong, Rong Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China CAS Key Laboratory of Human-MachineIntelligence-Synergy Systems ShenzhenInstitutes of Advanced Technology China
Object detection plays an important role in the field of self-driving. Illumination has a great impact on object detection, but most of the current methods do not solve the problem of object detection in poor light en... 详细信息
来源: 评论