咨询与建议

限定检索结果

文献类型

  • 95 篇 会议
  • 48 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 123 篇 工学
    • 87 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 46 篇 控制科学与工程
    • 24 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 机械工程
    • 11 篇 化学工程与技术
    • 8 篇 力学(可授工学、理...
    • 7 篇 光学工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 电气工程
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 电子科学与技术(可...
    • 5 篇 船舶与海洋工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 安全科学与工程
    • 3 篇 动力工程及工程热...
  • 69 篇 理学
    • 42 篇 数学
    • 19 篇 物理学
    • 14 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 9 篇 化学
    • 7 篇 系统科学
  • 30 篇 管理学
    • 19 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 3 篇 教育学
  • 2 篇 法学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 农学

主题

  • 5 篇 mobile robots
  • 4 篇 robots
  • 3 篇 deep neural netw...
  • 3 篇 recommender syst...
  • 3 篇 software enginee...
  • 3 篇 manipulators
  • 3 篇 wireless sensor ...
  • 3 篇 feature extracti...
  • 3 篇 robotics
  • 3 篇 color
  • 2 篇 image segmentati...
  • 2 篇 intelligent robo...
  • 2 篇 maneuverability
  • 2 篇 reverse engineer...
  • 2 篇 requirements eng...
  • 2 篇 fuzzy control
  • 2 篇 machine learning
  • 2 篇 image classifica...
  • 2 篇 clustering algor...
  • 2 篇 equations

机构

  • 7 篇 adv. robotics/in...
  • 5 篇 state key lab. f...
  • 4 篇 big data institu...
  • 3 篇 state key lab. o...
  • 3 篇 international sc...
  • 3 篇 state key lab. o...
  • 3 篇 school of comput...
  • 3 篇 guangxi colleges...
  • 3 篇 networking and i...
  • 3 篇 guangxi colleges...
  • 3 篇 party committee ...
  • 3 篇 school of inform...
  • 2 篇 college of compu...
  • 2 篇 school of mathem...
  • 2 篇 multigig inc. un...
  • 2 篇 feng chia univer...
  • 2 篇 intelligent supp...
  • 2 篇 college of mathe...
  • 2 篇 siemens it solut...
  • 2 篇 school of comput...

作者

  • 11 篇 yang simon x.
  • 5 篇 wang ran
  • 4 篇 liu jin
  • 4 篇 choi ho-jin
  • 3 篇 qin zengchang
  • 3 篇 li yang
  • 3 篇 wang xizhao
  • 3 篇 zhan-jiang ji
  • 3 篇 li hao
  • 3 篇 wei shi
  • 3 篇 pourpanah farhad
  • 3 篇 chen sihong
  • 3 篇 shen haojing
  • 2 篇 man ka lok
  • 2 篇 yuehu liu
  • 2 篇 zhang zhuosheng
  • 2 篇 dong jin song
  • 2 篇 kumar a.p. sathi...
  • 2 篇 jin zhi
  • 2 篇 zhou jing

语言

  • 134 篇 英文
  • 7 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
检索条件"机构=Intelligent Software Engineering and Robotics Lab."
144 条 记 录,以下是41-50 订阅
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, lab.led datasets ... 详细信息
来源: 评论
A Review of Generalized Zero-Shot Learning Methods
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Abdar, Moloud Luo, Yuxuan Zhou, Xinlei Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Jonathan Wu, Q.M. The Centre for Computer Vision and Deep Learning Department of Electrical and Computer Engineering University of Windsor WindsorONN9B 3P4 Canada Deakin University Australia The Department of Computer Science City University of Hong Kong Hong Kong The College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leve... 详细信息
来源: 评论
An Iterative unsupervised Person Search Algorithm on Natural Scene Images
An Iterative unsupervised Person Search Algorithm on Natural...
收藏 引用
Chinese Automation Congress (CAC)
作者: Sisi Cao Yuehu Liu School of Software Engineering Xi’an Jiaotong University Xi’an China Key Lab of Digital Technology and Intelligent System of Shaanxi Province Institute of Artificial Intelligence and Robotics (IAIR) Xi’an Jiaotong University Xi’an China
Person search is a challenging task due to the different requirements of annotations between person detection and Re-identification. In general, person search methods use the supervised person Re-identification method... 详细信息
来源: 评论
Erratum to “Entropy-based fuzzy support vector machine for imbalanced datasets” [Knowl.-Based Syst. 115 (2017) 87–99]
收藏 引用
Knowledge-Based Systems 2020年 192卷 105287-105287页
作者: Salim Rezvani Xizhao Wang Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen 518060 Guangdong China
In this note, we show that the calculation of statistics X F 2 and F F in sections 4.5 and 4.6 of the paper (Fan et al., 2017) is not correct. Also, based on the calculation of Critical Difference (CD) of Bonferr... 详细信息
来源: 评论
Edge Detection Operator for Underwater Target Image  3
Edge Detection Operator for Underwater Target Image
收藏 引用
3rd IEEE International Conference on Image, Vision and Computing, ICIVC 2018
作者: Xiaoheng, Dong Minghang, Li Jiashu, Miao Zhengyu, Wang Shanghai Marine Electronic Equipment Research Institute Shanghai China Shanghai University Key Lab. of Intelligent Manufacturing and Robotics School of Mechatronic Engineering and Automation Shanghai China Shanghai Aerospace Control Technology Institute Shanghai China
Image edge detection is an important basis for image recognition extraction. The traditional segmentation algorithm can't effectively extract important edge information of digital image. In view of the low contras... 详细信息
来源: 评论
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论
Sparse weighted naive bayes classifier for efficient classification of categorical data  3
Sparse weighted naive bayes classifier for efficient classif...
收藏 引用
3rd IEEE International Conference on Data Science in Cyberspace, DSC 2018
作者: Zheng, Zhuoyuan Cai, Yunpeng Yang, Yujie Li, Ye Guangxi Key Laboratory of Trusted Software Guangxi Colleges and Universities Key Lab. of Intelligent Processing of Computer Images and Graphics Guilin University of Electronic Technology Guilin541004 China Shenzhen Institutes of Advanced Technology Key Laboratory for Biomedical Informatics and Health Engineering Chinese Academy of Sciences Shenzhen518055 China
Feature selection has become a key challenge in machine learning with the rapid growth of data size in real-world applications. However, existing feature selection methods mainly focus on numeric data, which will lead... 详细信息
来源: 评论
Prototypes as Anchors: Tackling Unseen Noise for online continual learning
收藏 引用
Neural networks : the official journal of the International Neural Network Society 2025年 190卷
作者: Shao-Yuan Li Yu-Xiang Zheng Sheng-Jun Huang Songcan Chen Kangkan Wang MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China State Key Lab. for Novel Software Technology Nanjing University Nanjing 211106 PR China Joint Laboratory of Spatial Intelligent Perception and Large Model Application Nanjing University of Aeronautics and Astronautics Nanjing 211106 PR China. Electronic address: lisy@***. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China. Electronic address: zhengyx@***. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China. Electronic address: huangsj@***. MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China. Electronic address: s.chen@***. School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 PR China. Electronic address: wangkangkan@***.
In the context of online class-incremental continual learning (CIL), adapting to lab.l noise becomes paramount for model success in evolving domains. While some continual learning (CL) methods have begun to address no... 详细信息
来源: 评论