咨询与建议

限定检索结果

文献类型

  • 877 篇 会议
  • 564 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,442 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 978 篇 工学
    • 666 篇 计算机科学与技术...
    • 585 篇 软件工程
    • 209 篇 信息与通信工程
    • 155 篇 控制科学与工程
    • 107 篇 生物工程
    • 104 篇 电气工程
    • 101 篇 机械工程
    • 73 篇 生物医学工程(可授...
    • 66 篇 电子科学与技术(可...
    • 65 篇 光学工程
    • 51 篇 化学工程与技术
    • 40 篇 安全科学与工程
    • 29 篇 仪器科学与技术
    • 29 篇 动力工程及工程热...
    • 28 篇 土木工程
    • 28 篇 交通运输工程
    • 27 篇 建筑学
    • 23 篇 材料科学与工程(可...
  • 489 篇 理学
    • 272 篇 数学
    • 110 篇 生物学
    • 97 篇 物理学
    • 80 篇 统计学(可授理学、...
    • 75 篇 系统科学
    • 52 篇 化学
  • 280 篇 管理学
    • 150 篇 管理科学与工程(可...
    • 145 篇 图书情报与档案管...
    • 58 篇 工商管理
  • 44 篇 法学
    • 39 篇 社会学
  • 41 篇 医学
    • 37 篇 临床医学
    • 31 篇 基础医学(可授医学...
  • 21 篇 经济学
  • 16 篇 教育学
  • 11 篇 农学
  • 3 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 53 篇 training
  • 39 篇 semantics
  • 33 篇 feature extracti...
  • 29 篇 computational mo...
  • 27 篇 neural networks
  • 27 篇 data mining
  • 26 篇 deep learning
  • 25 篇 laboratories
  • 24 篇 convolution
  • 21 篇 optimization
  • 21 篇 wireless sensor ...
  • 21 篇 accuracy
  • 20 篇 computer science
  • 19 篇 robustness
  • 18 篇 machine learning
  • 18 篇 data models
  • 16 篇 reinforcement le...
  • 16 篇 software enginee...
  • 15 篇 conferences
  • 15 篇 image segmentati...

机构

  • 62 篇 college of compu...
  • 56 篇 beijing key labo...
  • 52 篇 school of softwa...
  • 48 篇 school of electr...
  • 37 篇 beijing key labo...
  • 35 篇 key laboratory o...
  • 34 篇 guangdong key la...
  • 30 篇 state key labora...
  • 28 篇 national enginee...
  • 22 篇 seventh research...
  • 21 篇 school of comput...
  • 21 篇 guangdong provin...
  • 20 篇 shenzhen institu...
  • 18 篇 university of ch...
  • 18 篇 peng cheng labor...
  • 17 篇 school of inform...
  • 16 篇 beijing key labo...
  • 15 篇 beijing key labo...
  • 14 篇 guangdong key la...
  • 14 篇 key laboratory o...

作者

  • 78 篇 junping du
  • 51 篇 yingmin jia
  • 49 篇 shen linlin
  • 30 篇 fashan yu
  • 25 篇 du junping
  • 18 篇 huadong ma
  • 17 篇 jia yingmin
  • 16 篇 linlin shen
  • 15 篇 wu qingyao
  • 14 篇 yin baocai
  • 14 篇 cai yi
  • 13 篇 yu fashan
  • 13 篇 xie weicheng
  • 12 篇 liang liu
  • 11 篇 deyuan meng
  • 11 篇 xi zhang
  • 11 篇 tan mingkui
  • 11 篇 meiyu liang
  • 10 篇 zhang qiang
  • 10 篇 liang meiyu

语言

  • 1,349 篇 英文
  • 65 篇 其他
  • 30 篇 中文
  • 1 篇 西班牙文
检索条件"机构=Intelligent Software and Software Engineering Laboratory"
1442 条 记 录,以下是51-60 订阅
排序:
Dynamic crushing behaviors and enhanced energy absorption of bio-inspired hierarchical honeycombs with different topologies
收藏 引用
Defence Technology(防务技术) 2023年 第4期22卷 99-111页
作者: Xin-chun Zhang Nan-nan Liu Chao-chao An He-xiang Wu Na Li Ke-ming Hao Department of Mechanical Engineering North China Electric Power UniversityBaoding071003China Hebei Key Laboratory of Electric Machinery Health Maintenance&Failure Prevention North China Electric Power UniversityBaoding071003China School of Civil Engineering Northeast Forestry UniversityHarbin150040China Department of Intelligent Engineering Hebei Software InstituteBaoding071000China
In order to pursue good crushing load uniformity and enchance energy absorption efficiency of conventional honeycombs, a kind of bio-inspired hierarchical honeycomb model is proposed by mimicking the arched crab shell... 详细信息
来源: 评论
User story clustering in agile development:a framework and an empirical study
收藏 引用
Frontiers of Computer Science 2023年 第6期17卷 43-59页
作者: Bo YANG Xiuyin MA Chunhui WANG Haoran GUO Huai LIU Zhi JIN School of Information Science and Technology Beijing Forestry UniversityBeijing 100083China Engineering Research Center for Forestry Oriented Intelligent Information Processing National Forestry and Grassland AdministrationBeijing 100083China School of Information Science and Technology North China University of TechnologyBeijing 100144China College of Computer Science and Technology Inner Mongolia Normal UniversityHohhot 010020China Department of Computer Science and Software Engineering Swinburne University of TechnologyHawthorn VIC 3122Australia Key Laboratory of High Confidence Software Technologies(Peking University) Ministry of EducationBeijing 100871China Institute of Software School of Computer SciencePeking UniversityBeijing 100871China
Agile development aims at rapidly developing software while embracing the continuous evolution of user requirements along the whole development *** stories are the primary means of requirements collection and elicitat... 详细信息
来源: 评论
How to Design the Emergency of Takeover Warning and Takeover Scene to Make Drivers have Better Takeover Performance?  8
How to Design the Emergency of Takeover Warning and Takeover...
收藏 引用
8th CAA International Conference on Vehicular Control and Intelligence, CVCI 2024
作者: Wang, Zhihao Chen, Haolin Tang, Qiuyang Zhao, Xiaohua Li, Zhenlong Fu, Qiang China Automotive Engineering Research Institute Co. Ltd. State Key Laboratory of Intelligent Vehicle Safety Technology Electronic Communication and Software Evaluation Research Center Chongqing China Beijing University of Technology Beijing Key Laboratory of Traffic Engineering Beijing China China Automotive Engineering Research Institute Co. Ltd. Electronic Communication and Software Evaluation Research Center Chongqing China
This study aims to explore the driver's takeover performance in different emergency takeover scenes and takeover warnings, and to respond to how to design the emergency degree of takeover warning. First, we design... 详细信息
来源: 评论
SeeMe: An intelligent edge server selection method for location-aware business task computing over IIoT
SeeMe: An intelligent edge server selection method for locat...
收藏 引用
作者: Dou, Wanchun Liu, Bowen Duan, Jirun Dai, Fei Qi, Lianyong Xu, Xiaolong State Key Laboratory for Novel Software Technology Nanjing University Nanjing China College of Big Data and Intelligent Engineering Southwest Forestry University Kunming China School of Computer Science Qufu Normal University Qufu China School of Computer and Software Nanjing University of Information Science and Technology Nanjing China
In the past few years, latency-sensitive task computing over the industrial internet of things (IIoT) has played a key role in an increasing number of intelligent applications, such as intelligent self-driving vehicle... 详细信息
来源: 评论
An End-to-End Training Method to Ensemble Bi-Linear Models for Knowledge Graph Completion
An End-to-End Training Method to Ensemble Bi-Linear Models f...
收藏 引用
2023 International Conference on Machine Learning and Cybernetics, ICMLC 2023
作者: Cen, Si Liu, Han Liu, Chao Zou, Xiaoying Dai, Guoquan Wang, Xizhao College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen518060 China
The study of ensemble learning in knowledge graph embedding (KGE) shows that combining multiple individual KGE models can perform better on knowledge graph completion. However, existing KGE ensemble methods ignore the... 详细信息
来源: 评论
The stiffness of elastomeric diaphragm in pneumatic springs  7
The stiffness of elastomeric diaphragm in pneumatic springs
收藏 引用
7th International Conference on Aeronautical, Aerospace and Mechanical engineering, AAME 2024
作者: Bai, Yumei Che, Jixing Wu, Mingkai Wu, Jiulin Jiang, Wei State Key Laboratory of Intelligent Manufacturing Equipment and Technology Huazhong University of Science and Technology Hubei Wuhan430074 China School of Automation and Software Engineering Shanxi University Shanxi Tai Yuan030031 China
The design of pneumatic springs applied in precision vibration isolation platforms requires an accurate mathematical model. Many validation experiments have shown that neglecting the effect of the diaphragm on the res... 详细信息
来源: 评论
Unsigned Road Incidents Detection Using Improved RESNET From Driver-View Images
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年 第5期6卷 1203-1216页
作者: Li, Changping Wang, Bingshu Zheng, Jiangbin Zhang, Yongjun Chen, C.L. Philip Northwestern Polytechnical University School of Software Xi’an710129 China Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security Shenzhen518060 China Guizhou University State Key Laboratory of Public Big Data College of Computer Science and Technology Guiyang550025 China South China University of Technology School of Computer Science and Engineering Guangzhou510641 China
Frequent road incidents cause significant physical harm and economic losses globally. The key to ensuring road safety lies in accurately perceiving surrounding road incidents. However, the highly dynamic nature o... 详细信息
来源: 评论
Cross-modal Search Method of Technology Video based on Adversarial Learning and Feature Fusion  8
Cross-modal Search Method of Technology Video based on Adver...
收藏 引用
8th IEEE International Conference on Cloud Computing and Intelligence Systems, CCIS 2022
作者: Liu, Xiangbin Du, Junping Liang, Meiyu Li, Ang Beijing University of Posts and Telecommunications Beijing Key Laboratory of Intelligent Communication Software and Multimedia School of Computer Science National Pilot Software Engineering School Beijing100876 China
Technology videos contain rich multi-modal information. In cross-modal information search, the data features of different modalities cannot be compared directly, so the semantic gap between different modalities is a k... 详细信息
来源: 评论
Adversarial Guided Gradient Estimation Hashing for Cross-modal Retrieval  8
Adversarial Guided Gradient Estimation Hashing for Cross-mod...
收藏 引用
8th IEEE International Conference on Cloud Computing and Intelligence Systems, CCIS 2022
作者: Lu, Kangkang Liang, Meiyu Xue, Zhe Cao, Xiaowen Yin, Mengran Zhao, Zehua Beijing University of Posts and Telecommunications Beijing Key Laboratory of Intelligent Communication Software and Multimedia School of Computer Science National Pilot Software Engineering School Beijing100876 China
Due to low storage cost and fast query speed, deep hashing methods are widely used in cross-modal retrieval. However, the 'heterogeneous gap' between multi-modal data is still a challenge. Moreover, a major di... 详细信息
来源: 评论
Boosting Adversarial Training with Learnable Distribution
收藏 引用
Computers, Materials & Continua 2024年 第3期78卷 3247-3265页
作者: Kai Chen Jinwei Wang James Msughter Adeke Guangjie Liu Yuewei Dai School of Electronics and Information Engineering Nanjing University of Information Science and TechnologyNanjing210044China Key Laboratory of Intelligent Support Technology for Complex Environments Ministry of EducationNanjing210044China School of Computer and Software Nanjing University of Information Science and TechnologyNanjing210044China Nanjing Center for Applied Mathematics Nanjing211135China
In recent years,various adversarial defense methods have been proposed to improve the robustness of deep neural *** training is one of the most potent methods to defend against adversarial ***,the difference in the fe... 详细信息
来源: 评论