咨询与建议

限定检索结果

文献类型

  • 1,033 篇 会议
  • 860 篇 期刊文献
  • 27 册 图书

馆藏范围

  • 1,920 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,243 篇 工学
    • 844 篇 计算机科学与技术...
    • 706 篇 软件工程
    • 270 篇 信息与通信工程
    • 233 篇 控制科学与工程
    • 144 篇 电气工程
    • 128 篇 生物工程
    • 114 篇 生物医学工程(可授...
    • 108 篇 机械工程
    • 93 篇 光学工程
    • 86 篇 电子科学与技术(可...
    • 50 篇 动力工程及工程热...
    • 45 篇 安全科学与工程
    • 41 篇 仪器科学与技术
    • 35 篇 交通运输工程
    • 34 篇 化学工程与技术
    • 32 篇 土木工程
  • 674 篇 理学
    • 387 篇 数学
    • 152 篇 生物学
    • 132 篇 物理学
    • 117 篇 统计学(可授理学、...
    • 109 篇 系统科学
    • 43 篇 化学
  • 330 篇 管理学
    • 214 篇 管理科学与工程(可...
    • 131 篇 图书情报与档案管...
    • 92 篇 工商管理
  • 95 篇 医学
    • 86 篇 临床医学
    • 71 篇 基础医学(可授医学...
    • 52 篇 药学(可授医学、理...
  • 45 篇 法学
    • 34 篇 社会学
  • 29 篇 经济学
    • 29 篇 应用经济学
  • 20 篇 农学
  • 19 篇 教育学
  • 5 篇 军事学
  • 4 篇 文学
  • 1 篇 艺术学

主题

  • 89 篇 computer science
  • 84 篇 laboratories
  • 53 篇 software enginee...
  • 45 篇 artificial intel...
  • 38 篇 deep learning
  • 37 篇 feature extracti...
  • 36 篇 grid computing
  • 36 篇 computational mo...
  • 35 篇 application soft...
  • 33 篇 data mining
  • 31 篇 neural networks
  • 31 篇 machine learning
  • 31 篇 training
  • 30 篇 intelligent syst...
  • 29 篇 computer archite...
  • 29 篇 resource managem...
  • 28 篇 costs
  • 28 篇 semantics
  • 27 篇 software systems
  • 27 篇 quality of servi...

机构

  • 33 篇 beijing key labo...
  • 31 篇 state key labora...
  • 30 篇 college of compu...
  • 30 篇 state key labora...
  • 26 篇 grid computing a...
  • 23 篇 school of electr...
  • 23 篇 research institu...
  • 21 篇 software enginee...
  • 20 篇 seventh research...
  • 20 篇 shenzhen key lab...
  • 18 篇 department of co...
  • 18 篇 department of co...
  • 17 篇 software enginee...
  • 15 篇 school of intell...
  • 15 篇 school of inform...
  • 14 篇 ieee
  • 14 篇 moe-microsoft ke...
  • 14 篇 department of co...
  • 12 篇 department of co...
  • 12 篇 department of el...

作者

  • 47 篇 rajkumar buyya
  • 44 篇 junping du
  • 31 篇 yingmin jia
  • 23 篇 fashan yu
  • 21 篇 xu hua
  • 19 篇 ismail leila
  • 18 篇 lu bao-liang
  • 18 篇 yang guanghua
  • 18 篇 ma shaodan
  • 16 篇 zhao hai
  • 16 篇 runyao duan
  • 16 篇 gong chen
  • 15 篇 liu jiang
  • 15 篇 buyya rajkumar
  • 15 篇 ishibuchi hisao
  • 14 篇 ganesh k. venaya...
  • 13 篇 shen linlin
  • 12 篇 nengkun yu
  • 12 篇 fuchun sun
  • 12 篇 fan rui

语言

  • 1,781 篇 英文
  • 116 篇 其他
  • 22 篇 中文
  • 1 篇 日文
检索条件"机构=Intelligent Systems Laboratory Department of Computer Science and Software Engineering"
1920 条 记 录,以下是321-330 订阅
排序:
Zero-Shot Audio Captioning Using Soft and Hard Prompts
IEEE Transactions on Audio, Speech and Language Processing
收藏 引用
IEEE Transactions on Audio, Speech and Language Processing 2025年 33卷 2045-2058页
作者: Yiming Zhang Xuenan Xu Ruoyi Du Haohe Liu Yuan Dong Zheng-Hua Tan Wenwu Wang Zhanyu Ma Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Centre for Vision Speech and Signal Processing University of Surrey Guildford U.K. Department of Electronic Systems Aalborg University Aalborg Denmark
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test set from the same dataset. Su... 详细信息
来源: 评论
Confidence Estimation Based on the Explanations of Model’s Predictions
Confidence Estimation Based on the Explanations of Model’s ...
收藏 引用
Neuromorphic Computing (ICNC), International Conference on
作者: Kaiyue Wu Changwu Huang Xin Yao Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen China
Estimating the confidence of a machine learning (ML) model plays an important role in minimizing undesirable outcomes and safety risks when using ML models in the real world, especially in high-stake application scena...
来源: 评论
SETTP: Style Extraction and Tunable Inference via Dual-level Transferable Prompt Learning
arXiv
收藏 引用
arXiv 2024年
作者: Jin, Chunzhen Huang, Yongfeng Wang, Yaqi Cao, Peng Zaiane, Osmar Computer Science and Engineering Northeastern University Shenyang China Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education Northeastern University Shenyang China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong National Frontiers Science Center for Industrial Intelligence and Systems Optimization Shenyang China Amii University of Alberta EdmontonAB Canada
Text style transfer, an important research direction in natural language processing, aims to adapt the text to various preferences but often faces challenges with limited resources. In this work, we introduce a novel ... 详细信息
来源: 评论
Feature Attribution Explanation to Detect Harmful Dataset Shift
Feature Attribution Explanation to Detect Harmful Dataset Sh...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ziming Wang Changwu Huang Xin Yao Research Institute of Trustworthy Autonomous Systems (RITAS) Southern University of Science and Technology Shenzhen China Department of Computer Science and Engineering Guangdong Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Detecting whether a distribution shift has occurred in the dataset is a critical aspect when implementing machine learning models, as even a small shift in the data distribution may largely affect the performance of a...
来源: 评论
HyperDiff: Masked Diffusion Model with High-efficient Transformer for Hyperspectral Image Cross-Scene Classification
HyperDiff: Masked Diffusion Model with High-efficient Transf...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Pei Zhang Dong Wang Chanyue Wu Jing Yang Lei Kang Zongwen Bai Ying Li Qiang Shen School of Computer Science Northwestern Polytechnical University Xi’an China Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data Yan’an University Yan’an China School of Automation and Software Engineering Shanxi University Taiyuan China Qingdao Topscomm Communication Co. Ltd Qingdao China Department of Computer Science Aberystwyth University UK
Hyperspectral Image (HSI) cross-scene classification is a challenging task in remote sensing, particularly when real-time processing of Target Domain (TD) HSI is required, and data cannot be reused for training. While... 详细信息
来源: 评论
Evolving Constrained Reinforcement Learning Policy
Evolving Constrained Reinforcement Learning Policy
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Chengpeng Hu Jiyuan Pei Jialin Liu Xin Yao Research Institute of Trustworthy Autonomous Systems (RITAS) Southern University of Science and Technology Shenzhen China Department of Computer Science and Engineering Guangdong Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Evolutionary algorithms have been used to evolve a population of actors to generate diverse experiences for training reinforcement learning agents, which helps to tackle the temporal credit assignment problem and impr...
来源: 评论
From Rule-Based Models to Deep Learning Transformers Architectures for Natural Language Processing and Sign Language Translation systems: Survey, Taxonomy and Performance Evaluation
arXiv
收藏 引用
arXiv 2024年
作者: Shahin, Nada Ismail, Leila Intelligent Distributed Computing and Systems Lab Department of Computer Science and Software Engineering College of Information Technology United Arab Emirates University United Arab Emirates Emirates Center for Mobility Research United Arab Emirates University Abu Dhabi United Arab Emirates
With the growing Deaf and Hard of Hearing population worldwide and the persistent shortage of certified sign language interpreters, there is a pressing need for an efficient, signs-driven, integrated end-to-end transl... 详细信息
来源: 评论
Tackling Noisy Labels with Network Parameter Additive Decomposition
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Jingyi Xia, Xiaobo Lan, Long Wu, Xinghao Yu, Jun Yang, Wenjing Han, Bo Liu, Tongliang The Department of Intelligent Data Science College of Computer Science and Technology National University of Defense Technology Changsha410073 China The Trustworthy Machine Learning Lab School of Computer Science Faculty of Engineering University of Sydney DarlingtonNSW2008 Australia The State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China The Department of Automation University of Science and Technology of China Hefei230026 China The Department of Computer Science Hong Kong Baptist University Hong Kong
Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the a... 详细信息
来源: 评论
Technology Roadmap for Flexible Sensors
收藏 引用
ACS NANO 2023年 第6期17卷 5211-5295页
作者: Luo, Yifei Abidian, Mohammad Reza Ahn, Jong-Hyun Akinwande, Deji Andrews, Anne M. Antonietti, Markus Bao, Zhenan Berggren, Magnus Berkey, Christopher A. Bettinger, Christopher John Chen, Jun Chen, Peng Cheng, Wenlong Cheng, Xu Choi, Seon-Jin Chortos, Alex Dagdeviren, Canan Dauskardt, Reinhold H. Di, Chong-an Dickey, Michael D. Duan, Xiangfeng Facchetti, Antonio Fan, Zhiyong Fang, Yin Feng, Jianyou Feng, Xue Gao, Huajian Gao, Wei Gong, Xiwen Guo, Chuan Fei Guo, Xiaojun Hartel, Martin C. He, Zihan Ho, John S. Hu, Youfan Huang, Qiyao Huang, Yu Huo, Fengwei Hussain, Muhammad M. Javey, Ali Jeong, Unyong Jiang, Chen Jiang, Xingyu Kang, Jiheong Karnaushenko, Daniil Khademhosseini, Ali Kim, Dae-Hyeong Kim, Il-Doo Kireev, Dmitry Kong, Lingxuan Lee, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Li, Fengyu Li, Jinxing Liang, Cuiyuan Lim, Chwee Teck Lin, Yuanjing Lipomi, Darren J. Liu, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Loh, Xian Jun Lu, Nanshu Lv, Zhisheng Magdassi, Shlomo Malliaras, George G. Matsuhisa, Naoji Nathan, Arokia Niu, Simiao Pan, Jieming Pang, Changhyun Pei, Qibing Peng, Huisheng Qi, Dianpeng Ren, Huaying Rogers, John A. Rowe, Aaron Schmidt, Oliver G. Sekitani, Tsuyoshi Seo, Dae-Gyo Shen, Guozhen Sheng, Xing Shi, Qiongfeng Someya, Takao Song, Yanlin Stavrinidou, Eleni Su, Meng Sun, Xuemei Takei, Kuniharu Tao, Xiao-Ming Tee, Benjamin C. K. Thean, Aaron Voon-Yew Trung, Tran Quang Wan, Changjin Wang, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Weiss, Paul S. Wen, Hanqi Xu, Sheng Xu, Tailin Yan, Hongping Yan, Xuzhou Yang, Hui Yang, Le Yang, Shuaijian Yin, Lan Yu, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Zamburg, Evgeny Zhang, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhao, Siyuan Zhao, Xuanhe Zheng, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zhou, Tao Zhu, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zou, Guijin Chen, Xiaodong 08-03 Innovis Singapore 138634 Republic of Singapore Innovative Centre for Flexible Devices (iFLEX) School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Department of Biomedical Engineering University of Houston Houston Texas 77024 United States School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712 United States Microelectronics Research Center The University of Texas at Austin Austin Texas 78758 United States Department of Chemistry and Biochemistry California NanoSystems Institute and Department of Psychiatry and Biobehavioral Sciences Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology University of California Los Angeles Los Angeles California 90095 United States Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany Department of Chemical Engineering Stanford University Stanford California 94305 United States Laboratory of Organic Electronics Department of Science and Technology Campus Norrköping Linköping University 83 Linköping Sweden Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC) SE-100 44 Stockholm Sweden Department of Materials Science and Engineering Stanford University Stanford California 94301 United States Department of Biomedical Engineering and Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213 United States Department of Bioengineering University of California Los Angeles Los Angeles California 90095 United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637457 Singapore Nanobionics Group Department of Chemical and Biological Engineering Monash University Clayton Australia 3800 Monash
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitati... 详细信息
来源: 评论
Adaptive RBF-Neural-Network Control with Force Observer for Teleoperation Robotic System  1st
Adaptive RBF-Neural-Network Control with Force Observer for...
收藏 引用
1st International Conference on Cognitive Computation and systems, ICCCS 2022
作者: An, Zhaohui Min, Gaochen Jiang, Xiangzuo Yu, Xinbo He, Wei Silvestre, Carlos School of Intelligence Science and Technology Institute of Artificial Intelligence University of Science and Technology Beijing Beijing100083 China Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing100083 China Key Laboratory of Intelligent Bionic Unmanned Systems Ministry of Education University of Science and Technology Beijing Beijing100083 China Donald Bren School of Information and Computer Sciences University of California IrvineCA92697 United States Department of Electrical and Computer Engineering Faculty of Science and Technology University of Macau China LARSyS Instituto Superior Técnico Universidade de Lisboa Lisbon Portugal
In this paper, an adaptive radial basis function neural network (RBFNN) control strategy is proposed for bilateral teleoperation robotic system with uncertainty and time delay. Meantime, the force observer method is u... 详细信息
来源: 评论