咨询与建议

限定检索结果

文献类型

  • 1,032 篇 会议
  • 853 篇 期刊文献
  • 27 册 图书

馆藏范围

  • 1,912 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,236 篇 工学
    • 838 篇 计算机科学与技术...
    • 707 篇 软件工程
    • 269 篇 信息与通信工程
    • 228 篇 控制科学与工程
    • 143 篇 电气工程
    • 127 篇 生物工程
    • 113 篇 生物医学工程(可授...
    • 108 篇 机械工程
    • 94 篇 光学工程
    • 85 篇 电子科学与技术(可...
    • 50 篇 动力工程及工程热...
    • 46 篇 安全科学与工程
    • 40 篇 仪器科学与技术
    • 35 篇 化学工程与技术
    • 35 篇 交通运输工程
    • 32 篇 土木工程
  • 671 篇 理学
    • 385 篇 数学
    • 151 篇 生物学
    • 133 篇 物理学
    • 117 篇 统计学(可授理学、...
    • 110 篇 系统科学
    • 41 篇 化学
  • 330 篇 管理学
    • 215 篇 管理科学与工程(可...
    • 130 篇 图书情报与档案管...
    • 94 篇 工商管理
  • 94 篇 医学
    • 86 篇 临床医学
    • 71 篇 基础医学(可授医学...
    • 52 篇 药学(可授医学、理...
  • 45 篇 法学
    • 34 篇 社会学
  • 29 篇 经济学
    • 29 篇 应用经济学
  • 20 篇 教育学
  • 20 篇 农学
  • 5 篇 军事学
  • 4 篇 文学
  • 1 篇 艺术学

主题

  • 89 篇 computer science
  • 84 篇 laboratories
  • 53 篇 software enginee...
  • 43 篇 artificial intel...
  • 37 篇 deep learning
  • 37 篇 feature extracti...
  • 36 篇 grid computing
  • 36 篇 computational mo...
  • 35 篇 application soft...
  • 33 篇 data mining
  • 32 篇 training
  • 31 篇 neural networks
  • 30 篇 resource managem...
  • 30 篇 machine learning
  • 30 篇 intelligent syst...
  • 29 篇 computer archite...
  • 28 篇 costs
  • 28 篇 semantics
  • 27 篇 software systems
  • 27 篇 quality of servi...

机构

  • 33 篇 beijing key labo...
  • 31 篇 state key labora...
  • 30 篇 college of compu...
  • 30 篇 state key labora...
  • 26 篇 grid computing a...
  • 23 篇 school of electr...
  • 23 篇 research institu...
  • 21 篇 software enginee...
  • 21 篇 seventh research...
  • 20 篇 shenzhen key lab...
  • 18 篇 department of co...
  • 17 篇 department of co...
  • 17 篇 software enginee...
  • 15 篇 school of intell...
  • 15 篇 school of inform...
  • 14 篇 ieee
  • 14 篇 moe-microsoft ke...
  • 14 篇 department of co...
  • 13 篇 department of el...
  • 12 篇 department of co...

作者

  • 47 篇 rajkumar buyya
  • 45 篇 junping du
  • 32 篇 yingmin jia
  • 24 篇 fashan yu
  • 21 篇 xu hua
  • 19 篇 ismail leila
  • 19 篇 yang guanghua
  • 19 篇 ma shaodan
  • 18 篇 lu bao-liang
  • 16 篇 zhao hai
  • 16 篇 runyao duan
  • 16 篇 buyya rajkumar
  • 16 篇 gong chen
  • 15 篇 ishibuchi hisao
  • 14 篇 ganesh k. venaya...
  • 14 篇 liu jiang
  • 13 篇 shen linlin
  • 12 篇 nengkun yu
  • 12 篇 fuchun sun
  • 12 篇 fan rui

语言

  • 1,777 篇 英文
  • 112 篇 其他
  • 22 篇 中文
  • 1 篇 日文
检索条件"机构=Intelligent Systems Laboratory Department of Computer Science and Software Engineering"
1912 条 记 录,以下是731-740 订阅
排序:
A Multi-objective Computation Offloading Method in Multi-cloudlet Environment  9th
A Multi-objective Computation Offloading Method in Multi-clo...
收藏 引用
9th EAI International Conference on Cloud Computing, CloudComp 2019 and the 4th EAI International Conference on Smart Grid and Innovative Frontiers in Telecommunications, SmartGIFT 2019
作者: Peng, Kai Zhu, Shuaiqi Zheng, Lixin Xu, Xiaolong Leung, Victor C. M. College of Engineering Huaqiao University Quanzhou China Fujian Provincial Academic Engineering Research Centre in Industrial Intellectual Techniques and Systems Quanzhou China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Nanjing University of Science and Technology Nanjing210094 China Department of Electrical and Computer Engineering The University of British Columbia VancouverBCV6T 1Z4 Canada
Computation offloading is becoming a promising technology that can improve quality of service for mobile users in mobile edge computing. However, it becomes much difficult when there are multi-cloudlet near to the mob... 详细信息
来源: 评论
A review of evolutionary multi-modal multi-objective optimization
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Multi-modal multi-objective optimization aims to find all Pareto optimal solutions including overlapping solutions in the objective space. Multi-modal multi-objective optimization has been investigated in the evolutio... 详细信息
来源: 评论
An easy-to-use real-world multi-objective optimization problem suite
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Although synthetic test problems are widely used for the performance assessment of evolutionary multi-objective optimization algorithms, they are likely to include unrealistic properties which may lead to overestimati... 详细信息
来源: 评论
A niching indicator-based multi-modal many-objective optimizer
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Multi-modal multi-objective optimization is to locate (almost) equivalent Pareto optimal solutions as many as possible. Some evolutionary algorithms for multi-modal multi-objective optimization have been proposed in t... 详细信息
来源: 评论
Review and analysis of three components of differential evolution mutation operator in MOEA/D-DE
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
A decomposition-based multi-objec evolutionary algorithm with a differential evolution variation operator (MOEA/D-DE) shows high performance on challenging multi-objective problems (MOPs). The DE mutation consists of ... 详细信息
来源: 评论
An analysis of quality indicators using approximated optimal distributions in a Three-dimensional objective space
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Although quality indicators play a crucial role in benchmarking evolutionary multi-objective optimization algorithms, their properties are still unclear. One promising approach for understanding quality indicators is ... 详细信息
来源: 评论
A Multi-objective Computation Offloading Method for Hybrid Workflow Applications in Mobile Edge Computing  9th
A Multi-objective Computation Offloading Method for Hybrid W...
收藏 引用
9th EAI International Conference on Cloud Computing, CloudComp 2019 and the 4th EAI International Conference on Smart Grid and Innovative Frontiers in Telecommunications, SmartGIFT 2019
作者: Peng, Kai Zhao, Bohai Qian, Xingda Xu, Xiaolong Zheng, Lixin Leung, Victor C. M. College of Engineering Huaqiao University Quanzhou China Fujian Provincial Academic Engineering Research Center in Industrial Intellectual Techniques and Systems Quanzhou China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Nanjing University of Science and Technology Nanjing210094 China Department of Electrical and Computer Engineering The University of British Columbia VancouverBCV6T 1Z4 Canada
Computation offloading has become a promising method to overcome intrinsic defects of portable smart devices, such as low operating speed and low battery capacity. However, it is a challenge to design an optimized str... 详细信息
来源: 评论
A framework to handle multi-modal multi-objective optimization in decomposition-based evolutionary algorithms
arXiv
收藏 引用
arXiv 2020年
作者: Tanabe, Ryoji Ishibuchi, Hisao Shenzhen Key Laboratory of Computational Intelligence University Key Laboratory of Evolving Intelligent Systems of Guangdong Province Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
Multi-modal multi-objective optimization is to locate (almost) equivalent Pareto optimal solutions as many as possible. While decomposition-based evolutionary algorithms have good performance for multi-objective optim... 详细信息
来源: 评论
Corrigendum to “LightSOD: Towards lightweight and efficient network for salient object detection” [J. Comput. Vis. Imag. Underst. 249 (2024) 104148]
收藏 引用
computer Vision and Image Understanding 2025年 252卷
作者: Thien-Thu Ngo Hoang Ngoc Tran Md. Delowar Hossain Eui-Nam Huh School of Information Technology Center for Applied Intelligent Systems Research Halmstad University Kristian IV:s väg 3 Halmstad 30118 Halland Sweden Department Computer Science and Engineering KyungHee University Global Campus Deogyeong-daero Yongin-si 17104 Gyeonggi-do Republic of Korea Department of Software Engineering FPT University 600 Nguyen Van Cu Street Ninh Kieu 94000 Can Tho Viet Nam Department of Computer Science and Engineering Hajee Mohammad Danesh Science & Technology University Basherhat Dinajpur 5200 Rangpur Division Bangladesh
来源: 评论
NTIRE 2024 Challenge on Low Light Image Enhancement: Methods and Results
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xiaoning Wu, Zongwei Li, Ao Vasluianu, Florin Zhang, Yulun Gu, Shuhang Zhang, Le Zhu, Ce Timofte, Radu Jin, Zhi Wu, Hongjun Wang, Chenxi Ling, Haitao Cai, Yuanhao Bian, Hao Zheng, Yuxin Lin, Jing Yuille, Alan Shao, Ben Guo, Jin Liu, Tianli Wu, Mohao Feng, Yixu Hou, Shuo Lin, Haotian Zhu, Yu Wu, Peng Dong, Wei Sun, Jinqiu Zhang, Yanning Yan, Qingsen Zou, Wenbin Yang, Weipeng Li, Yunxiang Wei, Qiaomu Ye, Tian Chen, Sixiang Zhang, Zhao Zhao, Suiyi Wang, Bo Luo, Yan Zuo, Zhichao Wang, Mingshen Wang, Junhu Wei, Yanyan Sun, Xiaopeng Gao, Yu Huang, Jiancheng Chen, Hongming Chen, Xiang Tang, Hui Chen, Yuanbin Zhou, Yuanbo Dai, Xinwei Qiu, Xintao Deng, Wei Gao, Qinquan Tong, Tong Li, Mingjia Hu, Jin He, Xinyu Guo, Xiaojie Sabarinathan Uma, K. Sasithradevi, A. Sathya Bama, B. Mohamed Mansoor Roomi, S. Srivatsav, V. Wang, Jinjuan Sun, Long Chen, Qiuying Shao, Jiahong Zhang, Yizhi Conde, Marcos V. Feijoo, Daniel Benito, Juan C. García, Alvaro Lee, Jaeho Kim, Seongwan Sharif, S.M.A. Khujaev, Nodirkhuja Tsoy, Roman Murtaza, Ali Khairuddin, Uswah Faudzi, Ahmad'Athif Mohd Malagi, Sampada Joshi, Amogh Akalwadi, Nikhil Desai, Chaitra Tabib, Ramesh Ashok Mudenagudi, Uma Lian, Wenyi Lian, Wenjing Kalyanshetti, Jagadeesh Aralikatti, Vijayalaxmi Ashok Yashaswini, Palani Upasi, Nitish Hegde, Dikshit Patil, Ujwala Sujata, C. Yan, Xingzhuo Hao, Wei Fu, Minghan Choksy, Pooja Sarvaiya, Anjali Upla, Kishor Raja, Kiran Yan, Hailong Zhang, Yunkai Li, Baiang Zhang, Jingyi Zheng, Huan University of Electronic Science and Technology of China China Computer Vision Lab University of Würzburg Germany Shanghai Jiao Tong University China Computer Vision Lab ETH Zurich Switzerland School of Intelligent Systems Engineering Sun Yat-sen University Shenzhen Campus Guangdong Shenzhen518107 China Guangdong Provincial Key Laboratory of Fire Science and Technology Guangzhou510006 China Johns Hopkins University United States Tsinghua University China Zhejiang Dahua Technology Co. Ltd. China School of Computer Science Northwestern Polytechnical University China School of Software Northwestern Polytechnical University China School of Computer Science Xi'an University of Architecture and Technology China South China University of Technology China Fuzhou University China Chengdu University of Information Technology China Hong Kong University of Science and Technology Guangzhou China Hefei University of Technology China Individual Researcher Shenyang Aerospace University China Nanjing University of Science and Technology China Fuzhou University Fuzhou China Imperial Vision Technology Fuzhou China Tianjin University China Couger Inc Japan Sasi Institute of Technology & Engineering India Vellore Institute of Technology India Thiagarajar college of engineering India Coventry University United Kingdom Cidaut AI CVLab University of Wuerzburg Germany Opt-AI University Teknologi Malaysia Kuala Lumpur Malaysia Universiti Teknologi Malaysia Kuala Lumpur Malaysia KLE Technological University Karnataka Hubballi India School of Electronics and Communication Engineering KLE Technological University Karnataka Hubballi India School of Computer Science and Engineering KLE Technological University Karnataka Hubballi India Uppsala University Sweden Northeastern University United States Bosch Investment Ltd. China Fortinet Inc. University of Saskatchewan Canada Sardar Vallabhbhai National Institute of Technology India Norwegian University of Science and Technolog
This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of gen... 详细信息
来源: 评论