咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 111 篇 会议
  • 3 册 图书

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 144 篇 计算机科学与技术...
    • 117 篇 软件工程
    • 51 篇 控制科学与工程
    • 36 篇 信息与通信工程
    • 36 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 14 篇 光学工程
    • 12 篇 化学工程与技术
    • 11 篇 仪器科学与技术
    • 9 篇 电气工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
  • 116 篇 理学
    • 62 篇 数学
    • 39 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 27 篇 物理学
    • 19 篇 系统科学
    • 10 篇 化学
    • 4 篇 地球物理学
  • 37 篇 管理学
    • 20 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 13 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 25 篇 machine learning
  • 8 篇 reinforcement le...
  • 8 篇 training
  • 7 篇 motion planning
  • 7 篇 semantics
  • 6 篇 deep learning
  • 6 篇 planning
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 three-dimensiona...
  • 5 篇 neural networks
  • 5 篇 probabilistic lo...
  • 5 篇 forecasting
  • 5 篇 recurrent neural...
  • 4 篇 support vector m...
  • 4 篇 generative adver...
  • 4 篇 image segmentati...
  • 4 篇 optimization
  • 4 篇 robot sensing sy...
  • 4 篇 visualization

机构

  • 27 篇 max planck insti...
  • 23 篇 machine learning...
  • 15 篇 mpi for intellig...
  • 11 篇 google
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 8 篇 institute of mac...
  • 7 篇 max planck insti...
  • 7 篇 department empir...
  • 6 篇 machine learning...
  • 6 篇 fraunhofer cente...
  • 5 篇 eth zürich züric...
  • 4 篇 science computin...
  • 4 篇 empirical infere...
  • 4 篇 machine learning...
  • 4 篇 max planck insti...
  • 4 篇 school of mathem...
  • 4 篇 department of co...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...

作者

  • 28 篇 toussaint marc
  • 23 篇 macke jakob h.
  • 21 篇 behnke sven
  • 18 篇 schölkopf bernha...
  • 18 篇 bernhard schölko...
  • 13 篇 marc toussaint
  • 12 篇 mainprice jim
  • 11 篇 kevin murphy
  • 8 篇 deistler michael
  • 8 篇 dax maximilian
  • 8 篇 green stephen r.
  • 7 篇 sven behnke
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 jakob h. macke
  • 7 篇 rubenstein paul ...
  • 6 篇 memmesheimer rap...
  • 6 篇 gair jonathan
  • 6 篇 yuan chang-an
  • 6 篇 schröder corneli...

语言

  • 280 篇 英文
  • 18 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Intelligent Systems and Machine Learning"
298 条 记 录,以下是1-10 订阅
排序:
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
2025 IEEE/SICE International Symposium on System Integration, SII 2025
作者: Seliunina, Svetlana Otelepko, Artem Memmesheimer, Raphael Behnke, Sven University of Bonn Autonomous Intelligent Systems Group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics Germany
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
Robustness Evaluation of the German Extractive Question Answering Task  31
Robustness Evaluation of the German Extractive Question Answ...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Satheesh, Shalaka Beckh, Katharina Klug, Katrin Allende-Cid, Héctor Houben, Sebastian Hassan, Teena Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Germany Lamarr Institute for Machine Learning and Artificial Intelligence Bonn-Rhein-Sieg University of Applied Sciences Germany
To ensure reliable performance of Question Answering (QA) systems, evaluation of robustness is crucial. Common evaluation benchmarks commonly only include performance metrics, such as Exact Match (EM) and the F1 score... 详细信息
来源: 评论
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service Robots Using Foundation Models for Perception and Planning
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service...
收藏 引用
27th RoboCup International Symposium, 2024
作者: Memmesheimer, Raphael Nogga, Jan Pätzold, Bastian Kruzhkov, Evgenii Bultmann, Simon Schreiber, Michael Bode, Jonas Karacora, Bertan Park, Juhui Savinykh, Alena Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Bonn Germany
We present the approaches and contributions of the winning team NimbRo@Home at the RoboCup@Home 2024 competition in the Open Platform League held in Eindhoven, NL. Further, we describe our hardware setup and give an o... 详细信息
来源: 评论
Object-Centric Image to Video Generation with Language Guidance
arXiv
收藏 引用
arXiv 2025年
作者: Villar-Corrales, Angel Plepi, Gjergj Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Accurate and flexible world models are crucial for autonomous systems to understand their environment and predict future events. Object-centric models, with structured latent spaces, have shown promise in modeling obj... 详细信息
来源: 评论
Towards Conscious Service Robots
arXiv
收藏 引用
arXiv 2025年
作者: Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Deep learning’s success in perception, natural language processing, etc. inspires hopes for advancements in autonomous robotics. However, real-world robotics face challenges like variability, high-dimensional state s... 详细信息
来源: 评论
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
IEEE/SICE International Symposium on System Integration
作者: Svetlana Seliunina Artem Otelepko Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
PlaySlot: learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning
arXiv
收藏 引用
arXiv 2025年
作者: Villar-Corrales, Angel Behnke, Sven Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Predicting future scene representations is a crucial task for enabling robots to understand and interact with the environment. However, most existing methods rely on video sequences and simulations with precise action... 详细信息
来源: 评论
LiLMaps: Learnable Implicit Language Maps
arXiv
收藏 引用
arXiv 2025年
作者: Kruzhkov, Evgenii Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI University of Bonn Germany Autonomous Intelligent Systems Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics and The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
One of the current trends in robotics is to employ large language models (LLMs) to provide non-predefined command execution and natural human-robot interaction. It is useful to have an environment map together with it... 详细信息
来源: 评论
Adaptive deep probabilistic regression for real-time motor excitability state prediction from human EEG
收藏 引用
Brain Stimulation 2025年 第1期18卷 400-401页
作者: Haxel, Lisa Kapoor, Jaivardhan Ahola, Oskari Kahilakoski, Olli-Pekka Kirchhoff, Miriam Roine, Timo Ziemann, Ulf Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning & Tübingen AI Center Germany Hertie Institute for Clinical Brain Research Department Neurology and Stroke Germany Department of Neuroscience and Biomedical Engineering Aalto University School of Science Finland Department Empirical Inference Max Planck Institute for Intelligent Systems Germany
来源: 评论
LoGAN: A novel local attentive generative adversarial resizable network for detailed 3D reconstruction of the Martian surface using monocular HiRISE images and DTMs
收藏 引用
ISPRS Journal of Photogrammetry and Remote Sensing 2025年 225卷 302-327页
作者: Cao, Jiarui Huang, Rong Xu, Yusheng Ye, Zhen Qian, Jia Hoegner, Ludwig Tong, Xiaohua College of Surveying and Geoinformatics Tongji University Shanghai China Shanghai Key Laboratory for Planetary Mapping and Remote Sensing for Deep Space Exploration Shanghai China Institute for Applications of Machine Learning and Intelligent Systems Munich University of Applied Sciences Munich Germany
High-resolution Mars digital terrain models (DTMs) are crucial for exploration missions and scientific research. However, traditional photogrammetry is constrained by stereo image coverage and configuration, while las... 详细信息
来源: 评论