咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 111 篇 会议
  • 3 册 图书

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 144 篇 计算机科学与技术...
    • 117 篇 软件工程
    • 51 篇 控制科学与工程
    • 36 篇 信息与通信工程
    • 36 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 14 篇 光学工程
    • 12 篇 化学工程与技术
    • 11 篇 仪器科学与技术
    • 9 篇 电气工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
  • 116 篇 理学
    • 62 篇 数学
    • 39 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 27 篇 物理学
    • 19 篇 系统科学
    • 10 篇 化学
    • 4 篇 地球物理学
  • 37 篇 管理学
    • 20 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 13 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 25 篇 machine learning
  • 8 篇 reinforcement le...
  • 8 篇 training
  • 7 篇 motion planning
  • 7 篇 semantics
  • 6 篇 deep learning
  • 6 篇 planning
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 three-dimensiona...
  • 5 篇 neural networks
  • 5 篇 probabilistic lo...
  • 5 篇 forecasting
  • 5 篇 recurrent neural...
  • 4 篇 support vector m...
  • 4 篇 generative adver...
  • 4 篇 image segmentati...
  • 4 篇 optimization
  • 4 篇 robot sensing sy...
  • 4 篇 visualization

机构

  • 27 篇 max planck insti...
  • 23 篇 machine learning...
  • 15 篇 mpi for intellig...
  • 11 篇 google
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 8 篇 institute of mac...
  • 7 篇 max planck insti...
  • 7 篇 department empir...
  • 6 篇 machine learning...
  • 6 篇 fraunhofer cente...
  • 5 篇 eth zürich züric...
  • 4 篇 science computin...
  • 4 篇 empirical infere...
  • 4 篇 machine learning...
  • 4 篇 max planck insti...
  • 4 篇 school of mathem...
  • 4 篇 department of co...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...

作者

  • 28 篇 toussaint marc
  • 23 篇 macke jakob h.
  • 21 篇 behnke sven
  • 18 篇 schölkopf bernha...
  • 18 篇 bernhard schölko...
  • 13 篇 marc toussaint
  • 12 篇 mainprice jim
  • 11 篇 kevin murphy
  • 8 篇 deistler michael
  • 8 篇 dax maximilian
  • 8 篇 green stephen r.
  • 7 篇 sven behnke
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 jakob h. macke
  • 7 篇 rubenstein paul ...
  • 6 篇 memmesheimer rap...
  • 6 篇 gair jonathan
  • 6 篇 yuan chang-an
  • 6 篇 schröder corneli...

语言

  • 280 篇 英文
  • 18 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Intelligent Systems and Machine Learning"
298 条 记 录,以下是21-30 订阅
排序:
Feature relevance bounds for ordinal regression  27
Feature relevance bounds for ordinal regression
收藏 引用
27th European Symposium on Artificial Neural Networks, Computational Intelligence and machine learning, ESANN 2019
作者: Pfannschmidt, Lukas Jakob, Jonathan Biehl, Michael Tino, Peter Hammer, Barbara Machine Learning Group Bielefeld University Germany Intelligent Systems Group University of Groningen Netherlands Computer Science University of Birmingham United Kingdom
The increasing occurrence of ordinal data, mainly sociodemographic, led to a renewed research interest in ordinal regression, i.e. the prediction of ordered classes. Besides model accuracy, the interpretation of these... 详细信息
来源: 评论
Classification of Vulnerable Road Users based on Range-Doppler Maps of 77 GHz MIMO Radar using Different machine learning Approaches  22
Classification of Vulnerable Road Users based on Range-Doppl...
收藏 引用
6th International Conference on Graphics and Signal Processing, ICGSP 2022
作者: Bayram, Fatih S. Pütz, Florian Weiß, Julian Radtke, Roman Jesser, Alexander Stache, Nicolaj C. Institute for Intelligent Cyber-Physical Systems Heilbronn University of Applied Sciences Germany Center for Machine Learning Heilbronn University of Applied Sciences Germany
This paper involves the development of an intelligent delineator for road traffic detecting potential conflict situations between motor vehicles and vulnerable road users at an early stage. By emitting warning signals... 详细信息
来源: 评论
Flow Matching for Scalable Simulation-Based Inference  37
Flow Matching for Scalable Simulation-Based Inference
收藏 引用
37th Conference on Neural Information Processing systems, NeurIPS 2023
作者: Wildberger, Jonas Buchholz, Simon Macke, Jakob H. Dax, Maximilian Green, Stephen R. Schölkopf, Bernhard Max Planck Institute for Intelligent Systems Tübingen Germany Max Planck Institute for Intelligent Systems & Machine Learning in Science University of Tübingen Tübingen Germany University of Nottingham Nottingham United Kingdom
Neural posterior estimation methods based on discrete normalizing flows have become established tools for simulation-based inference (SBI), but scaling them to high-dimensional problems can be challenging. Building on... 详细信息
来源: 评论
Wasserstein auto-encoders: Latent dimensionality and random encoders  6
Wasserstein auto-encoders: Latent dimensionality and random ...
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Rubenstein, Paul Schölkopf, Bernhard Tolstikhin, Ilya Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany Machine Learning Group Engineering Department University of Cambridge United Kingdom
We study the role of latent space dimensionality in Wasserstein auto-encoders (WAEs). Through experimentation on synthetic and real datasets, we argue that random encoders should be preferred over deterministic encode... 详细信息
来源: 评论
Software traceability with topic modeling  10
Software traceability with topic modeling
收藏 引用
32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010
作者: Asuncion, Hazeline U. Asuncion, Arthur U. Taylor, Richard N. Institute for Software Research University of California Irvine CA United States Center for Machine Learning and Intelligent Systems University of California Irvine CA United States
Software traceability is a fundamentally important task in software engineering. The need for automated traceability increases as projects become more complex and as the number of artifacts increases. We propose an au... 详细信息
来源: 评论
They are not equally reliable: Semantic event search using differentiated concept classifiers
They are not equally reliable: Semantic event search using d...
收藏 引用
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
作者: Chang, Xiaojun Yu, Yao-Liang Yang, Yi Xing, Eric P. Centre for Quantum Computation and Intelligent Systems University of Technology Sydney Australia Machine Learning Department Carnegie Mellon University United States
Complex event detection on unconstrained Internet videos has seen much progress in recent years. However, state-of-the-art performance degrades dramatically when the number of positive training exemplars falls short. ... 详细信息
来源: 评论
Informed machine learning  1
Informed Machine Learning
收藏 引用
丛书名: Cognitive Technologies
1000年
作者: Daniel Schulz Christian Bauckhage
This open access book presents the concept of Informed machine learning and demonstrates its practical use with a compelling collection of applications of this paradigm in industrial and business use cases. These rang... 详细信息
来源: 评论
Complex event detection using semantic saliency and nearly-isotonic SVM  32
Complex event detection using semantic saliency and nearly-i...
收藏 引用
32nd International Conference on machine learning, ICML 2015
作者: Chang, Xiaojun Yang, Yi Xing, Eric P. Yu, Yao-Liang Centre for Quantum Computation and Intelligent Systems University of Technology Sydney SydneyNSW Australia Machine Learning Department Carnegie Mellon University PittsburghPA United States
We aim to detect complex events in long Internet videos that may last for hours. A major challenge in this setting is that only a few shots in a long video are relevant to the event of interest while others are irrele... 详细信息
来源: 评论
Energy Efficiency Optimization in Massive MIMO systems with Low-Resolution ADCs  2
Energy Efficiency Optimization in Massive MIMO Systems with ...
收藏 引用
2nd International Conference on Multidisciplinary Engineering and Applied Science, ICMEAS 2023
作者: Musa, Abdulwaheed Adebayo, Abdullateef Ola Peace Balogun, Oluwasijibomi Kwara State University Department of Electrical and Computer Engineering Malete Nigeria Kwara State University Centre for Artificial Intelligence and Machine Learning Systems Malete Nigeria University of Johannesburg Institute for Intelligent Systems South Africa
Massive multiple-input multiple-output (MIMO) is a promising 5G technology, but the high energy consumption from numerous radio components is a key challenge. Prior work has explored higher than 4-bit ADCs, but very l... 详细信息
来源: 评论
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
Deep 6-DoF Tracking of Unknown Objects for Reactive Grasping
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Marc Tuscher Julian Hörz Danny Driess Marc Toussaint sereact Machine Learning and Robotics Lab University of Stuttgart Max-Planck Institute for Intelligent Systems Stuttgart Learning and Intelligent Systems TU Berlin
Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of r... 详细信息
来源: 评论