咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 111 篇 会议
  • 3 册 图书

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 144 篇 计算机科学与技术...
    • 117 篇 软件工程
    • 51 篇 控制科学与工程
    • 36 篇 信息与通信工程
    • 36 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 14 篇 光学工程
    • 12 篇 化学工程与技术
    • 11 篇 仪器科学与技术
    • 9 篇 电气工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
  • 116 篇 理学
    • 62 篇 数学
    • 39 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 27 篇 物理学
    • 19 篇 系统科学
    • 10 篇 化学
    • 4 篇 地球物理学
  • 37 篇 管理学
    • 20 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 13 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 25 篇 machine learning
  • 8 篇 reinforcement le...
  • 8 篇 training
  • 7 篇 motion planning
  • 7 篇 semantics
  • 6 篇 deep learning
  • 6 篇 planning
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 three-dimensiona...
  • 5 篇 neural networks
  • 5 篇 probabilistic lo...
  • 5 篇 forecasting
  • 5 篇 recurrent neural...
  • 4 篇 support vector m...
  • 4 篇 generative adver...
  • 4 篇 image segmentati...
  • 4 篇 optimization
  • 4 篇 robot sensing sy...
  • 4 篇 visualization

机构

  • 27 篇 max planck insti...
  • 23 篇 machine learning...
  • 15 篇 mpi for intellig...
  • 11 篇 google
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 8 篇 institute of mac...
  • 7 篇 max planck insti...
  • 7 篇 department empir...
  • 6 篇 machine learning...
  • 6 篇 fraunhofer cente...
  • 5 篇 eth zürich züric...
  • 4 篇 science computin...
  • 4 篇 empirical infere...
  • 4 篇 machine learning...
  • 4 篇 max planck insti...
  • 4 篇 school of mathem...
  • 4 篇 department of co...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...

作者

  • 28 篇 toussaint marc
  • 23 篇 macke jakob h.
  • 21 篇 behnke sven
  • 18 篇 schölkopf bernha...
  • 18 篇 bernhard schölko...
  • 13 篇 marc toussaint
  • 12 篇 mainprice jim
  • 11 篇 kevin murphy
  • 8 篇 deistler michael
  • 8 篇 dax maximilian
  • 8 篇 green stephen r.
  • 7 篇 sven behnke
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 jakob h. macke
  • 7 篇 rubenstein paul ...
  • 6 篇 memmesheimer rap...
  • 6 篇 gair jonathan
  • 6 篇 yuan chang-an
  • 6 篇 schröder corneli...

语言

  • 280 篇 英文
  • 18 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Intelligent Systems and Machine Learning"
298 条 记 录,以下是41-50 订阅
排序:
EDA++: Estimation of Distribution Algorithms With Feasibility Conserving Mechanisms for Constrained Continuous Optimization
收藏 引用
IEEE Transactions on Evolutionary Computation 2022年 第5期26卷 1144-1156页
作者: Shirazi, Abolfazl Ceberio, Josu Lozano, Jose A. Basque Center for Applied Mathematics Machine Learning Group Bilbao48009 Spain University of the Basque Country Intelligent Systems Group Computer Science and Artificial Intelligence Department Donostia-San Sebastian20018 Spain University of the Basque Country Department of Computer Science Donostia-San Sebastian20018 Spain
Handling nonlinear constraints in continuous optimization is challenging, and finding a feasible solution is usually a difficult task. In the past few decades, various techniques have been developed to deal with linea... 详细信息
来源: 评论
ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning through Space-Time
arXiv
收藏 引用
arXiv 2022年
作者: Grothe, Francesco Hartmann, Valentin N. Orthey, Andreas Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Machine Learning & Robotics Lab University of Stuttgart Germany
We present a motion planner for planning through space-time with dynamic obstacles, velocity constraints, and unknown arrival time. Our algorithm, Space-Time RRT* (ST-RRT*), is a probabilistically complete, bidirectio... 详细信息
来源: 评论
Control-Tree Optimization: an approach to MPC under discrete Partial Observability
Control-Tree Optimization: an approach to MPC under discrete...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Camille Phiquepal Marc Toussaint Machine Learning & Robotic Lab University of Stuttgart Germany Learning and Intelligent Systems Lab TU Berlin Germany
This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a ... 详细信息
来源: 评论
learning to execute: Efficiently learning universal plan-conditioned policies in robotics
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Driess, Danny Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group Tu Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like... 详细信息
来源: 评论
learning to execute: efficiently learning universal plan-conditioned policies in robotics  21
Learning to execute: efficiently learning universal plan-con...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing systems
作者: Ingmar Schubert Danny Driess Ozgur S. Oguz Marc Toussaint Learning and Intelligent Systems Group TU Berlin Germany Machine Learning and Robotics Lab University of Stuttgart Germany
Applications of Reinforcement learning (RL) in robotics are often limited by high data demand. On the other hand, approximate models are readily available in many robotics scenarios, making model-based approaches like...
来源: 评论
Deep visual reasoning: learning to predict action sequences for task and motion planning from an initial scene image
arXiv
收藏 引用
arXiv 2020年
作者: Driess, Danny Ha, Jung-Su Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany Max-Planck Institute for Intelligent Systems Stuttgart Germany Learning and Intelligent Systems Group TU Berlin Germany
In this paper, we propose a deep convolutional recurrent neural network that predicts action sequences for task and motion planning (TAMP) from an initial scene image. Typical TAMP problems are formalized by combining... 详细信息
来源: 评论
Plan-based relaxed reward shaping for goal-directed tasks
arXiv
收藏 引用
arXiv 2021年
作者: Schubert, Ingmar Oguz, Ozgur S. Toussaint, Marc Learning and Intelligent Systems Group TU Berlin Germany Max Planck Institute for Intelligent Systems Stuttgart Germany Machine Learning and Robotics Lab University of Stuttgart Germany
In high-dimensional state spaces, the usefulness of Reinforcement learning (RL) is limited by the problem of exploration. This issue has been addressed using potential-based reward shaping (PB-RS) previously. In the p... 详细信息
来源: 评论
Solving partially observable reinforcement learning problems with recurrent neural networks
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2012年 7700 LECTURE NO卷 709-733页
作者: Duell, Siegmund Udluft, Steffen Sterzing, Volkmar Siemens AG Corporate Technology Intelligent Systems and Control Germany Berlin University of Technology Machine Learning Germany
The aim of this chapter is to provide a series of tricks and recipes for neural state estimation, particularly for real world applications of reinforcement learning. We use various topologies of recurrent neural netwo... 详细信息
来源: 评论
Integrating document clustering and topic modeling
Integrating document clustering and topic modeling
收藏 引用
29th Conference on Uncertainty in Artificial Intelligence, UAI 2013
作者: Xie, Pengtao Xing, Eric P. State Key Laboratory on Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing 100084 China Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States
Document clustering and topic modeling are two closely related tasks which can mutually benefit each other. Topic modeling can project documents into a topic space which facilitates effective document clustering. Clus... 详细信息
来源: 评论
Walk-the-Talk: LLM driven pedestrian motion generation
Walk-the-Talk: LLM driven pedestrian motion generation
收藏 引用
IEEE Symposium on intelligent Vehicle
作者: Mohan Ramesh Fabian B. Flohr Intelligent Vehicles Lab Institute for Applications of Machine Learning and Intelligent Systems Munich University of Applied Sciences Germany
In the field of autonomous driving, a key challenge is the "reality gap": transferring knowledge gained in simulation to real-world settings. Despite various approaches to mitigate this gap, there’s a notab... 详细信息
来源: 评论