咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 111 篇 会议
  • 3 册 图书

馆藏范围

  • 298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 196 篇 工学
    • 144 篇 计算机科学与技术...
    • 117 篇 软件工程
    • 51 篇 控制科学与工程
    • 36 篇 信息与通信工程
    • 36 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 14 篇 光学工程
    • 12 篇 化学工程与技术
    • 11 篇 仪器科学与技术
    • 9 篇 电气工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
    • 5 篇 材料科学与工程(可...
    • 5 篇 土木工程
  • 116 篇 理学
    • 62 篇 数学
    • 39 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 27 篇 物理学
    • 19 篇 系统科学
    • 10 篇 化学
    • 4 篇 地球物理学
  • 37 篇 管理学
    • 20 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 13 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
  • 6 篇 法学
    • 5 篇 社会学
  • 5 篇 农学
  • 2 篇 教育学

主题

  • 25 篇 machine learning
  • 8 篇 reinforcement le...
  • 8 篇 training
  • 7 篇 motion planning
  • 7 篇 semantics
  • 6 篇 deep learning
  • 6 篇 planning
  • 6 篇 feature extracti...
  • 5 篇 conferences
  • 5 篇 three-dimensiona...
  • 5 篇 neural networks
  • 5 篇 probabilistic lo...
  • 5 篇 forecasting
  • 5 篇 recurrent neural...
  • 4 篇 support vector m...
  • 4 篇 generative adver...
  • 4 篇 image segmentati...
  • 4 篇 optimization
  • 4 篇 robot sensing sy...
  • 4 篇 visualization

机构

  • 27 篇 max planck insti...
  • 23 篇 machine learning...
  • 15 篇 mpi for intellig...
  • 11 篇 google
  • 10 篇 learning and int...
  • 8 篇 learning and int...
  • 8 篇 institute of mac...
  • 7 篇 max planck insti...
  • 7 篇 department empir...
  • 6 篇 machine learning...
  • 6 篇 fraunhofer cente...
  • 5 篇 eth zürich züric...
  • 4 篇 science computin...
  • 4 篇 empirical infere...
  • 4 篇 machine learning...
  • 4 篇 max planck insti...
  • 4 篇 school of mathem...
  • 4 篇 department of co...
  • 4 篇 munich center fo...
  • 4 篇 fraunhofer insti...

作者

  • 28 篇 toussaint marc
  • 23 篇 macke jakob h.
  • 21 篇 behnke sven
  • 18 篇 schölkopf bernha...
  • 18 篇 bernhard schölko...
  • 13 篇 marc toussaint
  • 12 篇 mainprice jim
  • 11 篇 kevin murphy
  • 8 篇 deistler michael
  • 8 篇 dax maximilian
  • 8 篇 green stephen r.
  • 7 篇 sven behnke
  • 7 篇 oguz ozgur s.
  • 7 篇 driess danny
  • 7 篇 jakob h. macke
  • 7 篇 rubenstein paul ...
  • 6 篇 memmesheimer rap...
  • 6 篇 gair jonathan
  • 6 篇 yuan chang-an
  • 6 篇 schröder corneli...

语言

  • 280 篇 英文
  • 18 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Intelligent Systems and Machine Learning"
298 条 记 录,以下是71-80 订阅
排序:
Graph Neural Networks Designed for Different Graph Types: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Thomas, Josephine M. Moallemy-Oureh, Alice Beddar-Wiesing, Silvia Holzhüter, Clara GAIN - Graphs in Artificial Intelligence and Machine Learning Intelligent Embedded Systems University of Kassel Germany Kassel Germany
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual c... 详细信息
来源: 评论
Adversarial Robustness of MR Image Reconstruction under Realistic Perturbations
arXiv
收藏 引用
arXiv 2022年
作者: Morshuis, Jan Nikolas Gatidis, Sergios Hein, Matthias Baumgartner, Christian F. Cluster of Excellence Machine Learning University of Tübingen Germany Max-Planck Institute for Intelligent Systems Germany
Deep learning (DL) methods have shown promising results for solving ill-posed inverse problems such as MR image reconstruction from undersampled k-space data. However, these approaches currently have no guarantees for... 详细信息
来源: 评论
Graph learning by Dynamic Sampling
Graph Learning by Dynamic Sampling
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Luca Hermes Aleksei Liuliakov Malte Schilling Machine Learning Group Bielefeld University Germany Autonomous Intelligent Systems Group University of Münster Germany
Graph neural networks based on message-passing rely on the principle of neighborhood aggregation which has shown to work well for many graph tasks. In other cases these approaches appear insufficient, for example, whe...
来源: 评论
Deep Visual Heuristics: learning Feasibility of Mixed-Integer Programs for Manipulation Planning
Deep Visual Heuristics: Learning Feasibility of Mixed-Intege...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Danny Driess Ozgur Oguz Jung-Su Ha Marc Toussaint Machine Learning and Robotics Lab University of Stuttgart Germany Max Planck Institute for Intelligent Systems Stuttgart Germany
In this paper, we propose a deep neural network that predicts the feasibility of a mixed-integer program from visual input for robot manipulation planning. Integrating learning into task and motion planning is challen... 详细信息
来源: 评论
Causal Consistency of Structural Equation Models
arXiv
收藏 引用
arXiv 2017年
作者: Rubenstein, Paul K. Weichwald, Sebastian Bongers, Stephan Mooij, Joris M. Janzing, Dominik Grosse-Wentrup, Moritz Schölkopf, Bernhard Empirical Inference Mpi for Intelligent Systems Machine Learning Group University of Cambridge Max Planck Eth Center for Learning Systems 4Informatics Institute University of Amsterdam
Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interven...
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
arXiv
收藏 引用
arXiv 2024年
作者: Bode, Jonas Pätzold, Bastian Memmesheimer, Raphael Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service Robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Improving the Interpretability of GradCAMs in Deep Classification Networks
收藏 引用
Procedia Computer Science 2022年 200卷 620-628页
作者: Alfred Schöttl University of Applied Sciences Munich Dept. of Electrical Engineering and Information Technology Institute for Applications of Machine Learning and Intelligent Systems (IAMLIS) Munich 80335 Germany
Deep classification networks play an important role as backbone networks in industrial AI applications. These applications are often cost or safety critical; explainability of the AI results is a highly demanded featu... 详细信息
来源: 评论
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论