咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 5 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 船舶与海洋工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 交通运输工程
    • 1 篇 生物工程
  • 6 篇 理学
    • 3 篇 数学
    • 3 篇 物理学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 autonomous under...
  • 2 篇 pipelines
  • 1 篇 berthing
  • 1 篇 semantic segment...
  • 1 篇 service robotics
  • 1 篇 unmanned underwa...
  • 1 篇 control model
  • 1 篇 underwater struc...
  • 1 篇 image segmentati...
  • 1 篇 subsea
  • 1 篇 large dataset
  • 1 篇 neural networks
  • 1 篇 iterative method...
  • 1 篇 cameras
  • 1 篇 robots
  • 1 篇 plan execution
  • 1 篇 computational mo...
  • 1 篇 mobile robotics
  • 1 篇 object segmentat...
  • 1 篇 robot sensing sy...

机构

  • 3 篇 interactive robo...
  • 1 篇 university of sc...
  • 1 篇 visual artificia...
  • 1 篇 universitat autò...
  • 1 篇 cibm center for ...
  • 1 篇 faculty of engin...
  • 1 篇 university of ab...
  • 1 篇 xlab d.o.o. ljub...
  • 1 篇 university of ch...
  • 1 篇 department of nu...
  • 1 篇 radiology depart...
  • 1 篇 department of co...
  • 1 篇 universidad pomp...
  • 1 篇 department of ra...
  • 1 篇 department of ne...
  • 1 篇 department of ec...
  • 1 篇 ai lab tencent
  • 1 篇 department of in...
  • 1 篇 social robotics ...
  • 1 篇 division of bios...

作者

  • 8 篇 islam md jahidul
  • 7 篇 sattar junaed
  • 3 篇 luo peigen
  • 2 篇 enan sadman saki...
  • 2 篇 sadman sakib ena...
  • 2 篇 junaed sattar
  • 2 篇 md jahidul islam
  • 2 篇 peigen luo
  • 1 篇 d. aydogan
  • 1 篇 antonio penalver
  • 1 篇 c. fuller
  • 1 篇 z. zhao
  • 1 篇 d. zimmerer
  • 1 篇 r. dorent
  • 1 篇 miquel massot-ca...
  • 1 篇 a. galdran
  • 1 篇 n. padoy
  • 1 篇 morse christophe...
  • 1 篇 m. luu
  • 1 篇 s. bano

语言

  • 14 篇 英文
检索条件"机构=Interactive Robotics and Vision Laboratory"
14 条 记 录,以下是1-10 订阅
排序:
Underwater Image Super-Resolution using Deep Residual Multipliers
Underwater Image Super-Resolution using Deep Residual Multip...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Md Jahidul Islam Sadman Sakib Enan Peigen Luo Junaed Sattar Interactive Robotics and Vision Laboratory University of Minnesota Twin Cities US
We present a deep residual network-based generative model for single image super-resolution (SISR) of underwater imagery for use by autonomous underwater robots. We also provide an adversarial training pipeline for le... 详细信息
来源: 评论
Semantic Segmentation of Underwater Imagery: Dataset and Benchmark
Semantic Segmentation of Underwater Imagery: Dataset and Ben...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Md Jahidul Islam Chelsey Edge Yuyang Xiao Peigen Luo Muntaqim Mehtaz Christopher Morse Sadman Sakib Enan Junaed Sattar Interactive Robotics and Vision Laboratory (IRVLab) Minnesota Robotics Institute (MnRI) University of Minnesota Twin Cities US
In this paper, we present the first large-scale dataset for semantic Segmentation of Underwater IMagery (SUIM). It contains over 1500 images with pixel annotations for eight object categories: fish (vertebrates), reef... 详细信息
来源: 评论
Underwater image super-resolution using deep residual multipliers
arXiv
收藏 引用
arXiv 2019年
作者: Islam, Md Jahidul Enan, Sadman Sakib Luo, Peigen Sattar, Junaed Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering Minnesota Robotics Institute University of Minnesota Twin Cities United States
We present a deep residual network-based generative model for single image super-resolution (SISR) of underwater imagery for use by autonomous underwater robots. We also provide an adversarial training pipeline for le... 详细信息
来源: 评论
Robot-To-robot relative pose estimation using humans as markers
arXiv
收藏 引用
arXiv 2019年
作者: Islam, Md Jahidul Mo, Jiawei Sattar, Junaed Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering University of Minnesota Twin Cities United States
In this paper, we propose a method to determine the 3D relative pose of pairs of communicating robots by using human pose-based key-points as correspondences. We adopt a -leader-follower' framework, where at first... 详细信息
来源: 评论
Understanding Human Motion and Gestures for Underwater Human-Robot Collaboration
arXiv
收藏 引用
arXiv 2018年
作者: Islam, Md Jahidul Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering University of Minnesota- Twin Cities United States
In this paper, we present a number of robust methodologies for an underwater robot to visually detect, follow, and interact with a diver for collaborative task execution. We design and develop two autonomous diver-fol... 详细信息
来源: 评论
Semantic segmentation of underwater imagery: Dataset and benchmark
arXiv
收藏 引用
arXiv 2020年
作者: Islam, Md Jahidul Edge, Chelsey Xiao, Yuyang Luo, Peigen Mehtaz, Muntaqim Morse, Christopher Enan, Sadman Sakib Sattar, Junaed Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering Minnesota Robotics Institute University of Minnesota Twin CitiesMN United States
In this paper, we present the first large-scale dataset for semantic Segmentation of Underwater IMagery (SUIM). It contains over 1500 images with pixel annotations for eight object categories: fish (vertebrates), reef... 详细信息
来源: 评论
Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception
arXiv
收藏 引用
arXiv 2020年
作者: Islam, Md Jahidul Luo, Peigen Sattar, Junaed Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering Minnesota Robotics Institute University of Minnesota Twin CitiesMN United States
In this paper, we introduce and tackle the simultaneous enhancement and super-resolution (SESR) problem for underwater robot vision and provide an efficient solution for near real-time applications. We present Deep SE... 详细信息
来源: 评论
Fast underwater image enhancement for improved visual perception
arXiv
收藏 引用
arXiv 2019年
作者: Islam, Md Jahidul Xia, Youya Sattar, Junaed Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering Minnesota Robotics Institute University of Minnesota Twin CitiesMN United States
In this paper, we present a conditional generative adversarial network-based model for real-time underwater image enhancement. To supervise the adversarial training, we formulate an objective function that evaluates t... 详细信息
来源: 评论
SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater Robots
arXiv
收藏 引用
arXiv 2020年
作者: Islam, Md Jahidul Wang, Ruobing Sattar, Junaed Laboratory Dept. of ECE University of Florida FL United States Interactive Robotics and Vision Laboratory Dept. of CS University of Minnesota Twin Cities MN United States
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots. Our proposed model, named SVAM-Net, integrates deep visual features at various scale... 详细信息
来源: 评论
Underwater multi-robot convoying using visual tracking by detection
arXiv
收藏 引用
arXiv 2017年
作者: Shkurti, Florian Chang, Wei-Di Henderson, Peter Islam, Md Jahidul Higuera, Juan Camilo Gamboa Li, Jimmy Manderson, Travis Xu, Anqi Dudek, Gregory Sattar, Junaed Centre for Intelligent Machines School of Computer Science McGill University Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering University of Minnesota- Twin Cities Element AI
We present a robust multi-robot convoying approach that relies on visual detection of the leading agent, thus enabling target following in unstructured 3-D environments. Our method is based on the idea of tracking-by-... 详细信息
来源: 评论