咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 44 篇 理学
    • 34 篇 生物学
    • 10 篇 数学
    • 3 篇 化学
    • 3 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 1 篇 天文学
  • 33 篇 工学
    • 18 篇 生物工程
    • 13 篇 生物医学工程(可授...
    • 11 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 2 篇 机械工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 林业工程
  • 18 篇 医学
    • 14 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 9 篇 农学
    • 6 篇 作物学
  • 7 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 3 篇 genome
  • 3 篇 bioinformatics
  • 3 篇 gene expression
  • 2 篇 data integration
  • 2 篇 brain
  • 2 篇 recovery
  • 2 篇 biomolecules
  • 2 篇 ontology
  • 1 篇 immune checkpoin...
  • 1 篇 network object
  • 1 篇 shotgun proteomi...
  • 1 篇 peptide–spectrum...
  • 1 篇 graph database
  • 1 篇 migration
  • 1 篇 zinc
  • 1 篇 cancer
  • 1 篇 biomedical resea...
  • 1 篇 sql
  • 1 篇 spatial transcri...
  • 1 篇 translational re...

机构

  • 5 篇 interdepartmenta...
  • 5 篇 bioinformatics i...
  • 4 篇 interdepartmenta...
  • 4 篇 department of co...
  • 3 篇 department of bi...
  • 3 篇 interdepartmenta...
  • 2 篇 bioinformatics i...
  • 2 篇 department of co...
  • 2 篇 infectious and i...
  • 2 篇 school of comput...
  • 2 篇 department of st...
  • 2 篇 interdepartmenta...
  • 2 篇 interdepartmenta...
  • 2 篇 department of st...
  • 2 篇 department of me...
  • 2 篇 program in appli...
  • 2 篇 program in appli...
  • 2 篇 department of pa...
  • 2 篇 department of hu...
  • 2 篇 viterbi faculty ...

作者

  • 7 篇 kluger yuval
  • 4 篇 marcus alvarez
  • 4 篇 landa boris
  • 4 篇 noah zaitlen
  • 4 篇 päivi pajukanta
  • 4 篇 pasaniuc bogdan
  • 3 篇 cheung kei-hoi
  • 3 篇 song dongyuan
  • 3 篇 arthur ko
  • 3 篇 jaffe ariel
  • 3 篇 zong miao
  • 3 篇 li jingyi jessic...
  • 3 篇 van dijk david
  • 3 篇 kristina m garsk...
  • 3 篇 nadler boaz
  • 3 篇 caro josue orteg...
  • 3 篇 yuval kluger
  • 3 篇 zhao hongyu
  • 3 篇 jingyi jessica l...
  • 2 篇 ren sun

语言

  • 69 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=Interdepartmental Bioinformatics Program"
73 条 记 录,以下是11-20 订阅
排序:
Biwhitening reveals the rank of a count matrix
arXiv
收藏 引用
arXiv 2021年
作者: Landa, Boris Zhang, Thomas T.C.K. Kluger, Yuval Program in Applied Mathematics Yale University United States Department of Electrical and Systems Engineering University of Pennsylvania United States Interdepartmental Program in Computational Biology and Bioinformatics Yale University United States Department of Pathology Yale University School of Medicine United States
Estimating the rank of a corrupted data matrix is an important task in data analysis, most notably for choosing the number of components in PCA. Significant progress on this task was achieved using random matrix theor... 详细信息
来源: 评论
An efficient linear mixed model framework for meta-analytic Association studies across multiple contexts  21
An efficient linear mixed model framework for meta-analytic ...
收藏 引用
21st International Workshop on Algorithms in bioinformatics, WABI 2021
作者: Jew, Brandon Li, Jiajin Sankararaman, Sriram Sul, Jae Hoon Bioinformatics Interdepartmental Program University of California Los AngelesCA United States Department of Human Genetics University of California Los AngelesCA United States Department of Computer Science University of California Los AngelesCA United States Department of Computational Medicine University of California Los AngelesCA United States Department of Psychiatry and Biobehavioral Sciences University of California Los AngelesCA United States
Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from with... 详细信息
来源: 评论
Doubly-stochastic normalization of the Gaussian kernel is robust to heteroskedastic noise
arXiv
收藏 引用
arXiv 2020年
作者: Landa, Boris Coifman, Ronald R. Kluger, Yuval Program in Applied Mathematics Yale University Interdepartmental Program in Computational Biology and Bioinformatics Yale University Department of Pathology Yale University School of Medicine
A fundamental step in many data-analysis techniques is the construction of an affinity matrix describing similarities between data points. When the data points reside in Euclidean space, a widespread approach is to fr... 详细信息
来源: 评论
Cell2Sentence: Teaching Large Language Models the Language of Biology  41
Cell2Sentence: Teaching Large Language Models the Language o...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Levine, Daniel Rizvi, Syed Asad Lévy, Sacha Pallikkavaliyaveetil, Nazreen Zhang, David Chen, Xingyu Ghadermarzi, Sina Wu, Ruiming Zheng, Zihe Vrkic, Ivan Zhong, Anna Raskin, Daphne Han, Insu de Oliveira Fonseca, Antonio Henrique Caro, Josue Ortega Karbasi, Amin Dhodapkar, Rahul M. van Dijk, David Department of Computer Science Yale University New HavenCT United States School of Engineering Applied Science University of Pennsylvania PhiladelphiaPA United States School of Computer and Communication Sciences Swiss Federal Institute of Technology Lausanne Lausanne Switzerland Department of Neuroscience Yale School of Medicine New HavenCT United States Wu Tsai Institute Yale University New HavenCT United States Google United States Yale Institute for Foundations of Data Science New HavenCT United States Yale School of Engineering and Applied Science New HavenCT United States Roski Eye Institute University of Southern California Los AngelesCA United States Yale School of Medicine New HavenCT United States Cardiovascular Research Center Yale School of Medicine New HavenCT United States Interdepartmental Program in Computational Biology & Bioinformatics Yale University New HavenCT United States
We introduce Cell2Sentence (C2S), a novel method to directly adapt large language models to a biological context, specifically single-cell transcriptomics. By transforming gene expression data into"cell sentences... 详细信息
来源: 评论
A perspective on developing foundation models for analyzing spatial transcriptomic data
收藏 引用
Quantitative Biology 2025年 第4期13卷
作者: Tianyu Liu Minsheng Hao Xinhao Liu Hongyu Zhao Interdepartmental Program of Computational Biology and Bioinformatics Yale University New Haven Connecticut USA Department of Biostatistics Yale University New Haven Connecticut USA Research and Early Development Genentech South San Francisco California USA Department of Computer Science Princeton University Princeton New Jersey USA
Do we need a foundation model (FM) for spatial transcriptomic analysis? To answer this question, we prepared this perspective as a primer. We first review the current progress of developing FMs for modeling spatial tr... 详细信息
来源: 评论
Local two-sample testing over graphs and point-clouds by random-walk distributions
arXiv
收藏 引用
arXiv 2020年
作者: Landa, Boris Qu, Rihao Chang, Joseph Kluger, Yuval Program in Applied Mathematics Yale University Department of Pathology Yale University School of Medicine Department of Statistics and Data Science Yale University Interdepartmental Program in Computational Biology and Bioinformatics Yale University Department of Immunology Yale School of Medicine
Rejecting the null hypothesis in two-sample testing is a fundamental tool for scientific discovery. Yet, aside from concluding that two samples do not come from the same probability distribution, it is often of intere... 详细信息
来源: 评论
Spectral Top-Down Recovery of Latent Tree Models
arXiv
收藏 引用
arXiv 2021年
作者: Aizenbud, Yariv Jaffe, Ariel Wang, Meng Hu, Amber Amsel, Noah Nadler, Boaz Chang, Joseph T. Kluger, Yuval Program in Applied Mathematics Yale University New HavenCT06511 United States Department of Computer Science Weizmann Institute of Science Rehovot76100 Israel Department of Statistics Yale University New HavenCT06520 United States Interdepartmental Program in Computational Biology and Bioinformatics Yale University New HavenCT06511 United States Department of Pathology Yale University New HavenCT06511 United States
Modeling the distribution of high dimensional data by a latent tree graphical model is a prevalent approach in multiple scientific domains. A common task is to infer the underlying tree structure, given only observati... 详细信息
来源: 评论
THE TEMPORAL STRUCTURE OF LANGUAGE PROCESSING IN THE HUMAN BRAIN CORRESPONDS TO THE LAYERED HIERARCHY OF DEEP LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2023年
作者: Goldstein, Ariel Ham, Eric Schain, Mariano Nastase, Samuel A. Zada, Zaid Grinstein-Dabus, Avigail Aubrey, Bobbi Gazula, Harshvardhan Feder, Amir Doyle, Werner Devore, Sasha Dugan, Patricia Friedman, Daniel Reichart, Roi Brenner, Michael Hassidim, Avinatan Devinsky, Orrin Flinker, Adeen Levy, Omer Hasson, Uri Department of Psychology The Neuroscience Institute Princeton University PrincetonNJ United States Google Research United States New York University Grossman School of Medicine New YorkNY United States School of Engineering and Applied Science Harvard University CambridgeMA United States New York University Tandon School of Engineering BrooklynNY United States Blavatnik School of Computer Science Tel-Aviv University Israel Department of Cognitive and Brain Sciences Business School Hebrew University of Jerusalem Israel Bioinformatics Interdepartmental Program University of California Los Angeles Los AngelesCA United States Technion - Israel Institute of Technology Haifa Israel
Deep Language Models (DLMs) provide a novel computational paradigm for understanding the mechanisms of natural language processing in the human brain. Unlike traditional psycholinguistic models, DLMs use layered seque... 详细信息
来源: 评论
Estimating Enzyme Participation in Metabolic Pathways for Microbial Communities from RNA-seq Data  16th
Estimating Enzyme Participation in Metabolic Pathways for Mi...
收藏 引用
16th International Symposium on bioinformatics Research and Applications, ISBRA 2020
作者: Rondel, F. Hosseini, R. Sahoo, B. Knyazev, S. Mandric, I. Stewart, Frank Măndoiu, I.I. Pasaniuc, B. Zelikovsky, A. Department of Computer Science Georgia State University Atlanta United States Department of Computer Science University of California Los Angeles Los AngelesCA United States Department of Microbiology and Immunology Montana State University BozemanMT United States Computer Science and Engineering Department University of Connecticut StorrsCT United States Bioinformatics Interdepartmental Program University of California Los AngelesCA United States
Metatranscriptome sequence data analysis is necessary for understanding biochemical changes in the microbial community and their effects. In this paper, we propose a methodology to estimate activities of individual me... 详细信息
来源: 评论
Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq
收藏 引用
Nature Communications 2025年 第1期16卷 1-21页
作者: Zhang, Hefei Li, Xuhang Song, Dongyuan Yukselen, Onur Nanda, Shivani Kucukural, Alper Li, Jingyi Jessica Garber, Manuel Walhout, Albertha J. M. Department of Systems Biology University of Massachusetts Chan Medical School Worcester MA United States Bioinformatics Interdepartmental Ph.D. Program University of California Los Angeles CA United States Via Scientific Inc. Cambridge MA United States Department of Genomics and Computational Biology University of Massachusetts Chan Medical School Worcester MA United States Department of Statistics and Data Science Department of Biostatistics Department of Computational Medicine and Department of Human Genetics University of California Los Angeles CA United States Department of Genetics and Genome Sciences University of Connecticut Health Center Farmington CT United States Pathology Beth Israel Deaconess Medical Center Harvard Medical School Boston MA United States
Transcriptomes provide highly informative molecular phenotypes that, combined with gene perturbation, can connect genotype to phenotype. An ultimate goal is to perturb every gene and measure transcriptome changes, how...
来源: 评论