We are correcting the abstract of our published article ([1]). The sentence that starts "We observe that 4.5% of MPSS tags...." was not scientifically complete in the original abstract, having only two of th...
We are correcting the abstract of our published article ([1]). The sentence that starts "We observe that 4.5% of MPSS tags...." was not scientifically complete in the original abstract, having only two of the four numbers required to describe a comparison of two technologies in two different organisms. The abstract below more accurately describes our findings, as documented in Figure 1 of the manuscript.
Background: Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answeri...
详细信息
Background: Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answering complex neuroscience research questions. Domain ontologies can enable the querying heterogeneous data sets, but they are not sufficient for neuroscience since the data of interest commonly span multiple research domains. To this end, e-Neuroscience seeks to provide an integrated platform for neuroscientists to discover new knowledge through seamless integration of the very diverse types of neuroscience data. Here we present a Semantic Web approach to building this e-Neuroscience framework by using the Resource Description Framework (RDF) and its vocabulary description language, RDF Schema (RDFS), as a standard data model to facilitate both representation and integration of the data. Results: We have constructed a pilot ontology for BrainPharm (a subset of SenseLab) using RDFS and then converted a subset of the BrainPharm data into RDF according to the ontological structure. We have also integrated the converted BrainPharm data with existing RDF hypothesis and publication data from a pilot version of SWAN (Semantic Web Applications in Neuromedicine). Our implementation uses the RDF Data Model in Oracle Database 10g release 2 for data integration, query, and inference, while our Web interface allows users to query the data and retrieve the results in a convenient fashion. Conclusion: Accessing and integrating biomedical data which cuts across multiple disciplines will be increasingly indispensable and beneficial to neuroscience researchers. The Semantic Web approach we undertook has demonstrated a promising way to semantically integrate data sets created independently. It also shows how advanced queries and inferences can be performed over the integrated data, which are hard to achieve using traditional data integration approaches. Our pilot results su
Human groups show structured levels of genetic similarity as a consequence of factors such as geographical subdivision and genetic drift. Surveying this structure gives us a scientific perspective on human origins, sh...
Human groups show structured levels of genetic similarity as a consequence of factors such as geographical subdivision and genetic drift. Surveying this structure gives us a scientific perspective on human origins, sheds light on evolutionary processes that shape both human adaptation and disease, and is integral to effectively carrying out the mission of global medical genetics and personalized medicine. Surveys of population structure have been ongoing for decades, but in the past three years, single-nucleotide-polymorphism (SNP) array technology has provided unprecedented detail on human population structure at global and regional scales. These studies have confirmed well-known relationships between distantly related populations and uncovered previously unresolvable relationships among closely related human groups. SNPs represent the first dense genome-wide markers, and as such, their analysis has raised many challenges and insights relevant to the study of population genetics with whole-genome sequences. Here we draw on the lessons from these studies to anticipate the directions that will be most fruitful to pursue during the emerging whole-genome sequencing era.
暂无评论