咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 28 篇 会议

馆藏范围

  • 60 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 25 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 11 篇 生物工程
    • 7 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
  • 21 篇 理学
    • 12 篇 生物学
    • 10 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 16 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
    • 4 篇 公共管理
  • 9 篇 医学
    • 6 篇 临床医学
    • 6 篇 公共卫生与预防医...
    • 4 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 4 篇 graph neural net...
  • 3 篇 training
  • 2 篇 generative adver...
  • 2 篇 noise measuremen...
  • 2 篇 convolution
  • 2 篇 predictive model...
  • 2 篇 metadata
  • 2 篇 costs
  • 2 篇 machine learning
  • 2 篇 stochastic syste...
  • 2 篇 industries
  • 2 篇 crowdsourcing
  • 2 篇 convolutional ne...
  • 1 篇 covid-19
  • 1 篇 dtx
  • 1 篇 vehicle dynamics
  • 1 篇 wearable device
  • 1 篇 data integrity
  • 1 篇 spondyloarthriti...
  • 1 篇 random forest

机构

  • 5 篇 national enginee...
  • 5 篇 institute for ma...
  • 4 篇 center for machi...
  • 4 篇 novosibirsk stat...
  • 4 篇 institute of adv...
  • 4 篇 institute of com...
  • 4 篇 iwr university o...
  • 3 篇 key lab of high ...
  • 3 篇 department of co...
  • 3 篇 data analytics g...
  • 3 篇 competence cente...
  • 3 篇 data and web sci...
  • 2 篇 university of sc...
  • 2 篇 universidad pomp...
  • 2 篇 stream data anal...
  • 2 篇 department of in...
  • 2 篇 strategic analyt...
  • 2 篇 center for mr re...
  • 2 篇 meshalkin nation...
  • 2 篇 fraunhofer mevis...

作者

  • 5 篇 keuper janis
  • 4 篇 stubbemann maxim...
  • 4 篇 schmidt-thieme l...
  • 4 篇 madhusudhanan ki...
  • 3 篇 pfreundt franz-j...
  • 3 篇 durall ricard
  • 3 篇 keuper margret
  • 2 篇 behrens gunnar
  • 2 篇 maetzler walter
  • 2 篇 scholtes ingo
  • 2 篇 jürgen winkler
  • 2 篇 miguel pato
  • 2 篇 cui bin
  • 2 篇 rupert müller
  • 2 篇 uwe rascher
  • 2 篇 stefan auer
  • 2 篇 alinejad-rokny h...
  • 2 篇 kevin alonso
  • 2 篇 bjoern eskofier
  • 2 篇 srinivasulu redd...

语言

  • 49 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Interdisciplinary Center for Machine Learning and Data Analytics"
60 条 记 录,以下是21-30 订阅
排序:
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National Research Organization of Thailand
Design and Implementation of a Data Governance Framework and...
收藏 引用
International Joint Conference on Computer Science and Software Engineering (JCSSE)
作者: Sapa Chanyachatchawan Krich Nasingkun Patipat Tumsangthong Porntiwa Chata Marut Buranarach Monsak Socharoentum Leveraging Technology Solutions Section National Electronics and Computer Technology Center Bangkok Thailand Strategic Analytics Networks with Machine Learning and AI Research National Electronics and Computer Technology Center Bangkok Thailand Data Science and Analytics Research Group National Electronics and Computer Technology Center Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ...
来源: 评论
Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
arXiv
收藏 引用
arXiv 2024年
作者: Hille, Tobias Stubbemann, Maximilian Hanika, Tom Knowledge & Data Engineering Group University of Kassel Kassel Germany Interdisciplinary Research Center for Information System Design University of Kassel Kassel Germany Information Systems and Machine Learning Lab University of Hildesheim Hildesheim Germany Institute of Computer Science University of Hildesheim Hildesheim Germany
Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable... 详细信息
来源: 评论
NC-ALG: Graph-Based Active learning Under Noisy Crowd
NC-ALG: Graph-Based Active Learning Under Noisy Crowd
收藏 引用
International Conference on data Engineering
作者: Wentao Zhang Yexin Wang Zhenbang You Yang Li Gang Cao Zhi Yang Bin Cui Center for Machine Learning Research Peking University Institute of Advanced Algorithms Research Shanghai National Engineering Labratory for Big Data Analytics and Applications Key Lab of High Confidence Software Technologies Peking University Department of Data Platform TEG Tencent Inc. Beijing Academy of Artificial Intelligence Institute of Computational Social Science Peking University Qingdao
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论
A Privacy-Preserving Framework for Collaborative machine learning with Kernel Methods
A Privacy-Preserving Framework for Collaborative Machine Lea...
收藏 引用
IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)
作者: Anika Hannemann Ali Burak Ünal Arjhun Swaminathan Erik Buchmann Mete Akgün Dept. of Computer Science Leipzig University Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig Germany Medical Data Privacy and Privacy-preserving Machine Learning (MDPPML) University of Tübingen Institute for Bioinformatics and Medical Informatics (IBMI) University of Tübingen Germany
It is challenging to implement Kernel methods, if the data sources are distributed and cannot be joined at a trusted third party for privacy reasons. It is even more challenging, if the use case rules out privacy-pres...
来源: 评论
BIM: Improving Graph Neural Networks with Balanced Influence Maximization
BIM: Improving Graph Neural Networks with Balanced Influence...
收藏 引用
International Conference on data Engineering
作者: Wentao Zhang Xinyi Gao Ling Yang Meng Cao Ping Huang Jiulong Shan Hongzhi Yin Bin Cui Center for Machine Learning Research Peking University Institute of Advanced Algorithms Research Shanghai National Engineering Labratory for Big Data Analytics and Applications The University of Queensland Australia Key Lab of High Confidence Software Technologies Peking University Apple Inc. Institute of Computational Social Science Peking University Qingdao
The imbalanced data classification problem has aroused lots of concerns from both academia and industry since data imbalance is a widespread phenomenon in many real-world scenarios. Although this problem has been well... 详细信息
来源: 评论
Thai Conversational Chatbot Classification Using BiLSTM and data Augmentation  1
收藏 引用
1st International Conference on data Science and Artificial Intelligence, DSAI 2023
作者: Lhasiw, Nunthawat Tanantong, Tanatorn Sanglerdsinlapachai, Nuttapong Thammasat Research Unit in Data Innovation and Artificial Intelligence Department of Computer Science Faculty of Science and Technology Thammasat University Pathum Thani Thailand Strategic Analytics Networks with Machine Learning and AI Research Team National Electronics and Computer Technology Center Pathum Thani Thailand
Chatbot platforms, e.g., Facebook and Line, have revolutionized human interaction in the digital age. In order to develop an automatic chatbot classification, there are several challenges especially for Thai chat mess... 详细信息
来源: 评论
Language-Agnostic Bias Detection in Language Models with Bias Probing
arXiv
收藏 引用
arXiv 2023年
作者: Koksal, Abdullatif Yalcin, Omer Faruk Akbiyik, Ahmet Kilavuz, M. Tahir Korhonen, Anna Schutze, Hinrich Center for Information and Language Processing LMU Munich Germany Munich Center for Machine Learning Germany Data Analytics and Computational Social Science University of Massachusetts Amherst United States Harvard Kennedy School United States Middle East Initiative Harvard Kennedy School United States Marmara University Turkey Language Technology Lab University of Cambridge United Kingdom
Pretrained language models (PLMs) are key components in NLP, but they contain strong social biases. Quantifying these biases is challenging because current methods focusing on fill-the-mask objectives are sensitive to... 详细信息
来源: 评论
Achieving Linear Speedup with Network-Independent learning Rates in Decentralized Stochastic Optimization
Achieving Linear Speedup with Network-Independent Learning R...
收藏 引用
IEEE Conference on Decision and Control
作者: Hao Yuan Sulaiman A. Alghunaim Kun Yuan Center for Machine Learning Research Peking University Beijing P. R. China Dept. Electrical Engr. Kuwait University Safat Kuwait AI for Science Institute Beijing P. R. China National Engineering Labratory for Big Data Analytics and Applications Beijing P. R. China
Decentralized stochastic optimization has become a crucial tool for addressing large-scale machine learning and control problems. In decentralized algorithms, all computing nodes are connected through a network topolo...
来源: 评论
System Architecture for Reading and Interpreting Physical Printouts of Medical Forms
System Architecture for Reading and Interpreting Physical Pr...
收藏 引用
Annual Siberian Russian Workshop on Electron Devices and Materials (EDM)
作者: Ekaterina Snegireva Grigory R. Khazankin Igor Mikheenko Stream Data Analytics and Machine Learning laboratory Novosibirsk State University Novosibirsk Russia Novosibirsk State University Novosibirsk Russia Meshalkin National Medical Research Center Novosibirsk Russia
This article describes the developed architecture of the system module for processing and interpreting analog medical data. Patients often undergo examinations in various medical institutions, and since their results ... 详细信息
来源: 评论
Deep learning Based Prediction of Sun-Induced Fluorescence from Hyplant Imagery
Deep Learning Based Prediction of Sun-Induced Fluorescence f...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Jim Buffat Miguel Pato Kevin Alonso Stefan Auer Emiliano Carmona Stefan Maier Rupert Müller Patrick Rademske Uwe Rascher Hanno Scharr Forschungszentrum Jülich GmbH Institute of Bio- and Geosciences IBG-2: Plant Sciences Jülich Germany German Aerospace Center (DLR) Earth Observation Center Remote Sensing Technology Institute Oberpfaffenhofen Germany RHEA Group c/o European Space Agency (ESA) Frascati Italy Forschungszentrum Jülich GmbH Institute of Advanced Simulations IAS-8: Data Analytics and Machine Learning Jülich Germany
The retrieval of sun-induced fluorescence (SIF) from hyper-spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method combining semi-supervised deep learning ...
来源: 评论