咨询与建议

限定检索结果

文献类型

  • 33 篇 期刊文献
  • 28 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 26 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 10 篇 生物工程
    • 7 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 4 篇 光学工程
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 19 篇 理学
    • 10 篇 数学
    • 10 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 15 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
    • 3 篇 公共管理
  • 7 篇 医学
    • 5 篇 临床医学
    • 4 篇 公共卫生与预防医...
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 4 篇 graph neural net...
  • 4 篇 machine learning
  • 3 篇 training
  • 2 篇 generative adver...
  • 2 篇 noise measuremen...
  • 2 篇 convolution
  • 2 篇 predictive model...
  • 2 篇 metadata
  • 2 篇 costs
  • 2 篇 stochastic syste...
  • 2 篇 industries
  • 2 篇 crowdsourcing
  • 2 篇 convolutional ne...
  • 1 篇 covid-19
  • 1 篇 dtx
  • 1 篇 vehicle dynamics
  • 1 篇 wearable device
  • 1 篇 data integrity
  • 1 篇 spondyloarthriti...
  • 1 篇 random forest

机构

  • 5 篇 national enginee...
  • 5 篇 institute for ma...
  • 4 篇 center for machi...
  • 4 篇 novosibirsk stat...
  • 4 篇 institute of adv...
  • 4 篇 institute of com...
  • 4 篇 iwr university o...
  • 3 篇 key lab of high ...
  • 3 篇 department of co...
  • 3 篇 data analytics g...
  • 3 篇 competence cente...
  • 3 篇 data and web sci...
  • 2 篇 university of sc...
  • 2 篇 barcelona instit...
  • 2 篇 universidad pomp...
  • 2 篇 stream data anal...
  • 2 篇 department of in...
  • 2 篇 strategic analyt...
  • 2 篇 center for mr re...
  • 2 篇 meshalkin nation...

作者

  • 5 篇 keuper janis
  • 4 篇 stubbemann maxim...
  • 4 篇 schmidt-thieme l...
  • 4 篇 madhusudhanan ki...
  • 3 篇 pfreundt franz-j...
  • 3 篇 durall ricard
  • 3 篇 keuper margret
  • 2 篇 behrens gunnar
  • 2 篇 arne küderle
  • 2 篇 silvia del din
  • 2 篇 walter maetzler
  • 2 篇 scholtes ingo
  • 2 篇 clemens becker
  • 2 篇 jürgen winkler
  • 2 篇 miguel pato
  • 2 篇 cui bin
  • 2 篇 rupert müller
  • 2 篇 uwe rascher
  • 2 篇 stefan auer
  • 2 篇 lars schwickert

语言

  • 58 篇 英文
  • 3 篇 其他
检索条件"机构=Interdisciplinary Center for Machine Learning and Data Analytics"
61 条 记 录,以下是41-50 订阅
排序:
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
arXiv
收藏 引用
arXiv 2020年
作者: Durall, Ricard Keuper, Margret Keuper, Janis Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Data- and Webscience Group University Mannheim Germany IWR University of Heidelberg Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show ... 详细信息
来源: 评论
Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions
Watch Your Up-Convolution: CNN Based Generative Deep Neural ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Ricard Durall Margret Keuper Janis Keuper Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany IWR University of Heidelberg Germany Data and Web Science Group University of Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show ... 详细信息
来源: 评论
Artificial Intelligence for Imaging Diagnostics in Neurosurgery
Artificial Intelligence for Imaging Diagnostics in Neurosurg...
收藏 引用
2019 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2019
作者: Letyagin, Andrey Yu. Degtyareva, Liana O. Golushko, Sergey K. Rzaev, Jamil A. Amelin, Mihail E. Pavlovsky, Evgeniy N. Tuchinov, Bair N. Amelina, Evgeniya V. Moisak, Galina I. Bulgakova, Ekaterina G. Novosibirsk State University Novosibirsk Russia Federal State Budget Institution Federal Center of Neurosurgery Novosibirsk Russia FSBI 'Federal Neurosurgical Center' Novosibirsk Russia Stread Data Analytics Machine Learning Lab. Novosibirsk State University Novosibirsk Russia
Improving the accuracy and timeliness of medical imaging in everyday clinical neurosurgery practice is an urgent problem for the health care of all countries. This problem will be solved with the help of artificial in... 详细信息
来源: 评论
Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Azim, Sayed Mehedi Sabab, Noor Hossain Nuri Noshadi, Iman Alinejad-Rokny, Hamid Sharma, Alok Shatabda, Swakkhar Dehzangi, Iman Center for Computational and Integrative Biology Rutgers University Camden 08102 NJ United States Department of Computer Science and Engineering United International University Plot 2 United City Madani Avenue BaddaDhaka 1212 Bangladesh Department of Bioengineering University of California Riverside 92507 CA United States BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia UNSW Data Science Hub UNSW Sydney Sydney NSW 2052 Australia Health Data Analytics Program AI-enabled Processes Research Centre Macquarie University Sydney 2109 Australia Institute for Integrated and Intelligent Systems Griffith University Brisbane Australia Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230-0045 Japan Department of Computer Science Rutgers University Camden 08102 NJ United States
The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistr... 详细信息
来源: 评论
Unmasking DeepFakes with simple features
arXiv
收藏 引用
arXiv 2019年
作者: Durall, Ricard Keuper, Margret Pfreundt, Franz-Josef Keuper, Janis Fraunhofer ITWM Germany IWR University of Heidelberg Germany Fraunhofer Center Machine Learning Germany Data and Web Science Group University Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Germany
Deep generative models have recently achieved impressive results for many real-world applications, successfully generating high-resolution and diverse samples from complex data sets. Due to this improvement, fake digi... 详细信息
来源: 评论
Harnessing multimodal approaches for depression detection using large language models and facial expressions
Npj mental health research
收藏 引用
Npj mental health research 2024年 第1期3卷 66页
作者: Misha Sadeghi Robert Richer Bernhard Egger Lena Schindler-Gmelch Lydia Helene Rupp Farnaz Rahimi Matthias Berking Bjoern M Eskofier Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. misha.sadeghi@fau.de. Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Chair of Visual Computing (LGDV) Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91058 Germany. Chair of Clinical Psychology and Psychotherapy (KliPs) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg 85764 Germany.
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression s...
来源: 评论
Complementary App-Based Yoga Home Exercise Therapy for Patients With Axial Spondyloarthritis: Usability Study
收藏 引用
JMIR Formative Research 2024年 8卷 e57185页
作者: Grube, Lara Petit, Pascal Vuillerme, Nicolas Nitschke, Marlies Nwosu, Obioma Bertrand Knitza, Johannes Krusche, Martin Seifer, Ann-Kristin Eskofier, Bjoern Schett, Georg Morf, Harriet Department of Internal Medicine 3- Rheumatology & Immunology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Deutsches Zentrum Immuntherapie Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany AGEIS Université Grenoble Alpes Grenoble France Institut Universitaire de France Paris France LabCom Telecom4Health Orange Labs & Université Grenoble Alpes CNRS Inria Grenoble France Machine Learning and Data Analytics Lab Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute for Digital Medicine University Hospital of Giessen and Marburg Philipps-University Marburg Marburg Germany III. Department of Medicine University Medical Center Hamburg-Eppendorf Hamburg Germany Translational Digital Health Group Institute of AI for Health German Research Center for Environmental Health Helmholtz Zentrum München Neuherberg Germany
Background: Axial spondyloarthritis (AS) is a chronic inflammatory rheumatic disease characterized by potentially disabling inflammation of the spine and adjacent joints. Regular exercise is a cornerstone of treatment... 详细信息
来源: 评论
Artificial Intelligence for Imaging Diagnostics in Neurosurgery
Artificial Intelligence for Imaging Diagnostics in Neurosurg...
收藏 引用
IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON
作者: Andrey Yu. Letyagin Sergey K. Golushko Jamil A. Rzaev Mihail E. Amelin Evgeniy N. Pavlovsky Bair N. Tuchinov Evgeniya V. Amelina Galina I. Moisak Ekaterina G. Bulgakova Liana O. Degtyareva Novosibirsk State University Novosibirsk Russia Federal State Budget Institution Federal Center of Neurosurgery Novosibirsk Russia FSBI “Federal Neurosurgical Center” Novosibirsk Russia Stread Data Analytics & Machine Learning lab. Novosibirsk State University Novosibirsk Russia
Improving the accuracy and timeliness of medical imaging in everyday clinical neurosurgery practice is an urgent problem for the health care of all countries. This problem will be solved with the help of artificial in...
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论