In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhous...
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s. The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal. The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. A
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factor...
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy a
We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as ...
详细信息
We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension Gμ as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model that interpolates between these two models. Our results improve upon the previous LIGO–Virgo constraints on Gμ by 1 to 2 orders of magnitude depending on the model that is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date: Gμ≲4×10−15. In the case of cosmic strings formed at the end of inflation in the context of grand unified theories, these results challenge simple inflationary models.
We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third obs...
详细信息
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we includ...
详细信息
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called pystoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from Fα,Θ<(0.013–7.6)×10−8 erg cm−2 s−1 Hz−1, and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Ωα,Θ<(0.57–9.3)×10−9 sr−1, depending on direction (Θ) and spectral index (α). These limits improve upon previous limits by factors of 2.9–3.5. We also set 95% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h0<(1.7–2.1)×10−25, a factor of ≥2.0 improvement compared to previous stochastic radiometer searches.
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3,...
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 ...
详细信息
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density ΩGW≤5.8×10−9 at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20–76.6 Hz; ΩGW(f)≤3.4×10−9 at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20–90.6 Hz; and ΩGW(f)≤3.9×10−10 at 25 Hz for a spectral index of 3, in the band 20–291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z≳2
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds ...
详细信息
This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24–4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization, or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as ∼10−10 M⊙c2 in gravitational waves at ∼70 Hz from a distance of 10 kpc, with 50% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models.
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one o...
详细信息
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8.
We report on an all-sky search for continuous gravitational waves in the frequency band 20–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Such a signal could be produced by ...
详细信息
We report on an all-sky search for continuous gravitational waves in the frequency band 20–2000 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO’s and Advanced Virgo’s third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10−25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10−26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10−25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched.
暂无评论