A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons Vladislav Sekulić, Frances K. Skinner F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks. Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi O3 Modeling auditory stream segregation, build-up and bistability James Rankin, Pamela Osborn Popp, John Rinzel O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields Alejandro Tabas, André Rupp, Emili Balaguer-Ballester O5 A simple model of retinal response to multi-electrode stimulation Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer O7 Input-location dependent gain modulation in cerebellar nucleus neurons Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Ni
I1 Introduction to the 2015 Brainhack Proceedings R. Cameron Craddock, Pierre Bellec, Daniel S. Margules, B. Nolan Nichols, Jörg P. Pfannmöller A1 Distributed collaboration: the case for the enhancement of B...
I1 Introduction to the 2015 Brainhack Proceedings R. Cameron Craddock, Pierre Bellec, Daniel S. Margules, B. Nolan Nichols, Jörg P. Pfannmöller A1 Distributed collaboration: the case for the enhancement of Brainspell’s interface AmanPreet Badhwar, David Kennedy, Jean-Baptiste Poline, Roberto Toro A2 Advancing open science through NiData Ben Cipollini, Ariel Rokem A3 Integrating the Brain Imaging Data Structure (BIDS) standard into C-PAC Daniel Clark, Krzysztof J. Gorgolewski, R. Cameron Craddock A4 Optimized implementations of voxel-wise degree centrality and local functional connectivity density mapping in AFNI R. Cameron Craddock, Daniel J. Clark A5 LORIS: DICOM anonymizer Samir Das, Cécile Madjar, Ayan Sengupta, Zia Mohades A6 Automatic extraction of academic collaborations in neuroimaging Sebastien Dery A7 NiftyView: a zero-footprint web application for viewing DICOM and NIfTI files Weiran Deng A8 Human Connectome Project Minimal Preprocessing Pipelines to Nipype Eric Earl, Damion V. Demeter, Kate Mills, Glad Mihai, Luka Ruzic, Nick Ketz, Andrew Reineberg, Marianne C. Reddan, Anne-Lise Goddings, Javier Gonzalez-Castillo, Krzysztof J. Gorgolewski A9 Generating music with resting-state fMRI data Caroline Froehlich, Gil Dekel, Daniel S. Margulies, R. Cameron Craddock A10 Highly comparable time-series analysis in Nitime Ben D. Fulcher A11 Nipype interfaces in CBRAIN Tristan Glatard, Samir Das, Reza Adalat, Natacha Beck, Rémi Bernard, Najmeh Khalili-Mahani, Pierre Rioux, Marc-Étienne Rousseau, Alan C. Evans A12 DueCredit: automated collection of citations for software, methods, and data Yaroslav O. Halchenko, Matteo Visconti di Oleggio Castello A13 Open source low-cost device to register dog’s heart rate and tail movement Raúl Hernández-Pérez, Edgar A. Morales, Laura V. Cuaya A14 Calculating the Laterality Index Using FSL for Stroke Neuroimaging Data Kaori L. Ito, Sook-Lei Liew A15 Wrapping FreeSurfer 6 for use in high-performance computing environments Hans J. Johns
Identifying transcription factor binding sites (TFBSs) is crucial for understanding the mechanism of transcriptional regulation. It is known that transcription factors (TFs) often cooperate to regulate genes. While tr...
详细信息
The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A...
The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform;(ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data;(iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making.
We demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the no...
详细信息
ISBN:
(纸本)9781424413973;1424413974
We demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural ependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from CODIS, we demonstrate that our approach is well suited for the problem of discovering short tandem repeats (STRs).
暂无评论