咨询与建议

限定检索结果

文献类型

  • 2,468 篇 会议
  • 2,101 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 4,570 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,136 篇 工学
    • 2,199 篇 计算机科学与技术...
    • 1,845 篇 软件工程
    • 781 篇 信息与通信工程
    • 372 篇 生物工程
    • 364 篇 控制科学与工程
    • 336 篇 电气工程
    • 300 篇 电子科学与技术(可...
    • 273 篇 光学工程
    • 227 篇 机械工程
    • 211 篇 生物医学工程(可授...
    • 190 篇 化学工程与技术
    • 139 篇 仪器科学与技术
    • 109 篇 动力工程及工程热...
    • 95 篇 材料科学与工程(可...
    • 83 篇 网络空间安全
    • 80 篇 安全科学与工程
    • 79 篇 建筑学
  • 1,778 篇 理学
    • 938 篇 数学
    • 528 篇 物理学
    • 417 篇 生物学
    • 283 篇 统计学(可授理学、...
    • 193 篇 化学
    • 126 篇 系统科学
  • 891 篇 管理学
    • 480 篇 图书情报与档案管...
    • 442 篇 管理科学与工程(可...
    • 159 篇 工商管理
  • 174 篇 医学
    • 150 篇 临床医学
    • 131 篇 基础医学(可授医学...
    • 86 篇 药学(可授医学、理...
  • 107 篇 法学
    • 93 篇 社会学
  • 59 篇 农学
  • 49 篇 教育学
  • 45 篇 经济学
  • 19 篇 文学
  • 12 篇 军事学
  • 12 篇 艺术学
  • 5 篇 哲学

主题

  • 177 篇 semantics
  • 161 篇 feature extracti...
  • 119 篇 training
  • 83 篇 deep learning
  • 79 篇 convolution
  • 73 篇 computational mo...
  • 65 篇 object detection
  • 62 篇 accuracy
  • 60 篇 image segmentati...
  • 52 篇 data mining
  • 50 篇 visualization
  • 48 篇 computer science
  • 48 篇 contrastive lear...
  • 47 篇 optimization
  • 46 篇 convolutional ne...
  • 45 篇 support vector m...
  • 45 篇 clustering algor...
  • 43 篇 robustness
  • 42 篇 computer vision
  • 41 篇 machine learning

机构

  • 161 篇 hubei province k...
  • 142 篇 key laboratory o...
  • 114 篇 school of comput...
  • 94 篇 college of compu...
  • 89 篇 faculty of scien...
  • 89 篇 departamento de ...
  • 89 篇 department for p...
  • 89 篇 provincial key l...
  • 88 篇 department of ph...
  • 88 篇 department of ph...
  • 88 篇 dipartimento di ...
  • 88 篇 yerevan physics ...
  • 88 篇 institute of phy...
  • 87 篇 kirchhoff-instit...
  • 86 篇 graduate school ...
  • 85 篇 fakultät für phy...
  • 85 篇 institute of phy...
  • 85 篇 physikalisches i...
  • 84 篇 department of ph...
  • 84 篇 institut für ast...

作者

  • 81 篇 f. buehrer
  • 81 篇 a. t. law
  • 81 篇 c. alexa
  • 81 篇 j. m. izen
  • 81 篇 s. veneziano
  • 81 篇 d. di valentino
  • 81 篇 g. bella
  • 81 篇 j. strandberg
  • 81 篇 d. calvet
  • 81 篇 c. amelung
  • 81 篇 n. orlando
  • 81 篇 c. gumpert
  • 81 篇 h. a. gordon
  • 81 篇 y. tayalati
  • 81 篇 g. spigo
  • 81 篇 v. chiarella
  • 81 篇 f. siegert
  • 81 篇 a. c. könig
  • 81 篇 a. dimitrievska
  • 81 篇 f. deliot

语言

  • 4,219 篇 英文
  • 251 篇 其他
  • 106 篇 中文
检索条件"机构=Jiangsu Computer Information Processing Technology Key Laboratory"
4570 条 记 录,以下是4131-4140 订阅
排序:
System Dynamics and Adaptive Control of MEMS Gyroscope Sensor
收藏 引用
IFAC Proceedings Volumes 2011年 第1期44卷 3551-3556页
作者: Juntao Fei Weili Dai Mingang Hua Yuncan Xue Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology College of Computer and Information Hohai University Changzhou 213022 P.R.China
Abstract This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is developed and established. The proposed ad... 详细信息
来源: 评论
A Novel Approach to Edge Detection of Color Image Based on Quaternion Fractional Directional Differentiation
A Novel Approach to Edge Detection of Color Image Based on Q...
收藏 引用
The 2011 International Conference on Automation and Robotics(ICAR 2011)
作者: Chaobang Gao Jiliu Zhou Fangnian Lang Qiang Pu Chang Liu College of Computer Science and Technology Chengdu University School of Computer Science Sichuan University Key Laboratory of Pattern Recognition and Intelligent Information Processing
In this paper, we denote a color image by a quaternion function, then find edge points by solving the maximum of quaternion fractional directional differentiation(QFDD)'s norm. This method is called edge detection... 详细信息
来源: 评论
Particle swarm optimization for automatic parameters determination of pulse coupled neural network
收藏 引用
Journal of computers 2011年 第8期6卷 1546-1553页
作者: Xinzheng, Xu Shifei, Ding Zhongzhi, Shi Zuopeng, Zhao Hong, Zhu School of Computer Science and Technology China University of Mining and Technology Xuzhou China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Pulse coupled neural network (PCNN), a wellknown class of neural networks, has original advantage when applied to image processing because of its biological background. However, when PCNN is used, the main problem is ... 详细信息
来源: 评论
A rough RBF neural networks optimized by the genetic algorithm
收藏 引用
Advances in information Sciences and Service Sciences 2011年 第7期3卷 332-339页
作者: Ding, Shifei Ma, Gang Xu, Xinzheng School of Computer Science and Technology China University of Mining and Technology Xuzhou China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science Beijing China
The large-scale data parallelism processing is an inherent characteristic of artificial neural networks, but the networks bring the efficiency problems of data processing. As one of the artificial neural networks, Rad... 详细信息
来源: 评论
Erratum to: Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in ... TeV pp collisions with the ATLAS detector
收藏 引用
The European Physical Journal. C, Particles and Fields. 2015年 第10期75卷 1页
作者: Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M Abouzeid, O S Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, B S Adamczyk, L Adams, D L Adelman, J Adomeit, S Adye, T Affolder, A A Agatonovic-jovin, T Aguilar-saavedra, J A Agustoni, M Ahlen, S P Ahmadov, F Aielli, G Akerstedt, H Åkesson, T P A Akimoto, G Akimov, A V Alberghi, G L Albert, J Albrand, S Alconada Verzini, M J Aleksa, M Aleksandrov, I N Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, S P Allbrooke, B M M Allport, P P Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Alvarez Gonzalez, B Piqueras, D Álvarez Alviggi, M G Amako, K Amaral Coutinho, Y Amelung, C Amidei, D Amor Dos Santos, S P Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, L S Andari, N Andeen, T Anders, C F Anders, G Anderson, K J Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, A V Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aperio Bella, L Arabidze, G Arai, Y Araque, J P Arce, A T H Arduh, F A Arguin, J-f Argyropoulos, S Arik, M Armbruster, A J Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Åsman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, N B Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, M K Azuelos, G Baak, M A Baas, A E Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, J T Baker, O K Balek, P Balestri, T Balli, F Banas, E Banerjee, Sw Bannoura, A A E Bansil, H S Barak, L Baranov, S P Barberio, E L Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, S L Barnett, B M Barnett, R M Barnovska, Z Baroncelli, A Barone, G Barr, A J Barreiro, F Barreiro Guimarães Da Costa, J Bartoldus, R Barton, A E Bartos, P Bassalat, A Basye, A Bates, R L Batista, S J Batley, J R Battaglia, M Bauce, M Bauer, F Bawa, H S Beacham, J B Beattie, M D Beau, T Beauchemin, P H Beccherle, R Bechtle, 85.CPPM Aix-Marseille Université and CNRS/IN2P3 Marseille France 113.Homer L. Dodge Department of Physics and Astronomy University of Oklahoma Norman OK USA 152.Institute of Physics Academia Sinica Taipei Taiwan 11.Institute of Physics Azerbaijan Academy of Sciences Baku Azerbaijan 107.Nikhef National Institute for Subatomic Physics and University of Amsterdam Amsterdam The Netherlands 90.Department of Physics and Astronomy Michigan State University East Lansing MI USA 159.Department of Physics University of Toronto Toronto ON Canada 154.Raymond and Beverly Sackler School of Physics and Astronomy Tel Aviv University Tel Aviv Israel 153.Department of Physics Technion: Israel Institute of Technology Haifa Israel 30.CERN Geneva Switzerland 147.Department of Physics Stockholm University Stockholm Sweden 227.The Oskar Klein Centre Stockholm Sweden 165.INFN Gruppo Collegato di Udine Sezione di Trieste Udine Italy 229.ICTP Trieste Italy 38.Faculty of Physics and Applied Computer Science AGH University of Science and Technology Kraków Poland 25.Physics Department Brookhaven National Laboratory Upton NY USA 108.Department of Physics Northern Illinois University De Kalb IL USA 100.Fakult?t für Physik Ludwig-Maximilians-Universit?t München Munich Germany 131.Particle Physics Department Rutherford Appleton Laboratory Didcot UK 74.Oliver Lodge Laboratory University of Liverpool Liverpool UK 13.Institute of Physics University of Belgrade Belgrade Serbia 126.Laboratorio de Instrumentacao e Fisica Experimental de Particulas LIP Lisbon Portugal 215.Departamento de Fisica Teorica y del Cosmos and CAFPE Universidad de Granada Granada Spain 17.Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics University of Bern Bern Switzerland 22.Department of Physics Boston University Boston MA USA 65.Joint Institute for Nuclear Research JINR Dubna Dubna Russia 134.INFN Sezione di Roma Tor Vergata Rome Ita
来源: 评论
Context-specific miRNA regulation network predicts cancer prognosis
Context-specific miRNA regulation network predicts cancer pr...
收藏 引用
5th IEEE International Conference on Systems Biology, ISB 2011
作者: Zhou, Xionghui Liu, Juan Liu, Changning Rayner, Simon Liang, Fengji Ju, Jingfang Li, Yinghui Chen, Shanguang Xiong, Jianghui School of Computer Science Wuhan University Wuhan China Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China State Key Laboratory of Virology Wuhan Institute of Virology Chinese Academy of Sciences Wuhan China Department of Pathology Stony Brook University Medical Center NY United States
MicroRNAs can regulate hundreds of target genes and play a pivotal role in a broad range of biological process. However, relatively little is known about how these highly connected miRNAs-target networks are remodelle... 详细信息
来源: 评论
China's grain security warning based on multifactor information fusion
收藏 引用
Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering 2011年 第5期27卷 183-189页
作者: Su, Xiaoyan Zhang, Huijie Li, Zhiqiang Deng, Yong School of Electronics and Information Technology Shanghai Jiao Tong University Shanghai 200240 China Key Laboratory of Digital Agricultural Early-warning Technology Ministry of Agriculture of China Beijing 100081 China College of Computer and Information Sciences Southwest University Chongqing 400715 China Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Xiangtan University Xiangtan 411105 China
China is the largest food consumption country in the world. With the social and economic development, China's food security has become a global attention. Grain security research involves many uncertain factors: a... 详细信息
来源: 评论
A Kind of Wireless MAC Protocol to Improve Survivability of WSN
A Kind of Wireless MAC Protocol to Improve Survivability of ...
收藏 引用
International Symposium on Knowledge Acquisition and Modeling, KAM
作者: Yin Kai Yang Xiong School of Computer &Information Engineering Key Laboratory of Changzhou Software Technology Research and Application Changzhou Institute of Technology Changzhou Jiangsu China
In Wireless Sensor Network (WSN), the ability to avoid collision directly impacts on node energy consumption and network performance. Based on introduction of CSMA/CA protocol, the paper laid emphasis on shortcoming o... 详细信息
来源: 评论
Double-Row Cascade Labeling Algorithm for Hyper-Scale Issue
收藏 引用
Procedia Engineering 2011年 15卷 4047-4051页
作者: Yebin Fan Hualong Zhao Department of Computer Science Huazhong University of Science and Technology National Key Laboratory of Science and Technology on Multi-Spectral Information Processing Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology
An efficient algorithm is presented to label the connected components in the case that the primary memory is smaller than the image data. Our algorithm uses only the memory of two image rows to label the huge image or... 详细信息
来源: 评论
Research and comparison of granularity cluster analysis methods
收藏 引用
International Journal of Advancements in Computing technology 2011年 第7期3卷 154-159页
作者: Ding, Shifei Tong, Chang School of Computer Science and Technology China University of Mining and Technology Xuzhou 221116 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science Beijing 100080 China
As an important component of data mining, Cluster Analysis (CA) has being attached importance to artificial intelligence, machine learning and other fields. Traditional clustering methods have been studied for a relat... 详细信息
来源: 评论