咨询与建议

限定检索结果

文献类型

  • 81 篇 会议
  • 70 篇 期刊文献

馆藏范围

  • 151 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 96 篇 工学
    • 76 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 32 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 电气工程
    • 12 篇 生物工程
    • 7 篇 电子科学与技术(可...
    • 6 篇 网络空间安全
    • 5 篇 机械工程
    • 5 篇 化学工程与技术
    • 4 篇 光学工程
    • 4 篇 交通运输工程
    • 4 篇 生物医学工程(可授...
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 航空宇航科学与技...
    • 2 篇 安全科学与工程
  • 56 篇 理学
    • 41 篇 数学
    • 26 篇 统计学(可授理学、...
    • 14 篇 生物学
    • 10 篇 物理学
    • 6 篇 系统科学
    • 5 篇 化学
    • 2 篇 地球物理学
  • 29 篇 管理学
    • 21 篇 图书情报与档案管...
    • 11 篇 管理科学与工程(可...
  • 4 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 9 篇 semantics
  • 8 篇 feature extracti...
  • 5 篇 privacy
  • 4 篇 conferences
  • 4 篇 reinforcement le...
  • 4 篇 deep learning
  • 4 篇 optimization
  • 4 篇 computational mo...
  • 4 篇 machine learning
  • 4 篇 monte carlo meth...
  • 3 篇 internet of thin...
  • 3 篇 aggregates
  • 3 篇 task analysis
  • 3 篇 quality of servi...
  • 3 篇 contrastive lear...
  • 3 篇 knowledge discov...
  • 3 篇 crowdsourcing
  • 3 篇 accuracy
  • 3 篇 forecasting
  • 2 篇 power demand

机构

  • 58 篇 school of comput...
  • 21 篇 jiangsu key labo...
  • 20 篇 jiangsu key labo...
  • 16 篇 jiangsu key labo...
  • 12 篇 jiangsu key labo...
  • 9 篇 nanjing universi...
  • 9 篇 school of comput...
  • 8 篇 state grid jiang...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 6 篇 peng cheng labor...
  • 6 篇 school of cyber ...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 4 篇 institute of inf...
  • 4 篇 school of comput...
  • 4 篇 jiangsu key labo...
  • 3 篇 jiangsu key lab ...
  • 3 篇 nanjing universi...
  • 3 篇 school of comput...

作者

  • 24 篇 xu xiaolong
  • 22 篇 xiaolong xu
  • 14 篇 liu bin
  • 7 篇 chen ke-jia
  • 6 篇 huang qingming
  • 6 篇 cao xiaochun
  • 6 篇 xu qianqian
  • 5 篇 jia xu
  • 5 篇 tao li
  • 5 篇 bin liu
  • 4 篇 jinling he
  • 4 篇 yang zhiyong
  • 4 篇 wang zitai
  • 4 篇 yang geng
  • 4 篇 yun li
  • 4 篇 xu jia
  • 4 篇 lejun gong
  • 4 篇 meng benyuan
  • 3 篇 xu lijie
  • 3 篇 zhao jinbo

语言

  • 144 篇 英文
  • 7 篇 其他
检索条件"机构=Jiangsu Key Lab of Big Data Security and Intelligent Processing School of Computer Science"
151 条 记 录,以下是61-70 订阅
Harnessing Low-Fidelity data to Accelerate Bayesian Optimization via Posterior Regularization
Harnessing Low-Fidelity Data to Accelerate Bayesian Optimiza...
收藏 引用
International Conference on big data and Smart Computing (bigCOMP)
作者: Bin Liu School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
Bayesian optimization (BO) is a powerful paradigm for derivative-free global optimization of a black-box objective function (BOF) that is expensive to evaluate. However, the overhead of BO can still be prohibitive for... 详细信息
来源: 评论
Decomposing Source Codes by Program Slicing for Bug Localization
Decomposing Source Codes by Program Slicing for Bug Localiza...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Jian Yong Ziye Zhu Yun Li Jiangsu Key Laboratory of Big Data Security and Intelligent Processing School of Computer Science Nanjing University of Posts and Telecommunications
Bug localization, which aims to automatically locate buggy source code files based on the given bug report, is a critical yet time-consuming task in the software engineering field. Existing advanced bug localization m...
来源: 评论
Harnessing low-fidelity data to accelerate Bayesian optimization via posterior regularization
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
Bayesian optimization (BO) is a powerful paradigm for derivative-free global optimization of a black-box objective function (BOF) that is expensive to evaluate. However, the overhead of BO can still be prohibitive for... 详细信息
来源: 评论
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling (Poster)
Robust Particle Filtering via Bayesian Nonparametric Outlier...
收藏 引用
International Conference on Information Fusion
作者: Bin Liu School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
This paper is concerned with the online estimation of a nonlinear dynamic system from a series of noisy measurements. The focus is on cases wherein outliers are present in-between normal noises. We assume that the out... 详细信息
来源: 评论
Particle filtering methods for stochastic optimization with application to large-scale empirical risk minimization
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Bin School of Computer Science Nanjing University of Posts and Telecommunications Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing Jiangsu210023 China
There is a recent interest in developing statistical filtering methods for stochastic optimization (FSO) by leveraging a probabilistic perspective of incremental proximity methods (IPMs). The existent FSO methods are ... 详细信息
来源: 评论
ILAPF: INCREMENTAL LEARNING ASSISTED PARTICLE FILTERING
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China
This paper is concerned with dynamic system state estimation based on a series of noisy measurement with the presence of outliers. An incremental learning assisted particle filtering (ILAPF) method is presented, which... 详细信息
来源: 评论
ILAPF: INCREMENTAL LEARNING ASSISTED PARTICLE FILTERING
ILAPF: INCREMENTAL LEARNING ASSISTED PARTICLE FILTERING
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Bin Liu School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing 210023 China
This paper is concerned with dynamic system state estimation based on a series of noisy measurement with the presence of outliers. An incremental learning assisted particle filtering (ILAPF) method is presented, which... 详细信息
来源: 评论
data-DRIVEN MODEL SET DESIGN FOR MODEL AVERAGED PARTICLE FILTER
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China
This paper is concerned with sequential state filtering in the presence of nonlinearity, non-Gaussianity and model uncertainty. For this problem, the Bayesian model averaged particle filter (BMAPF) is perhaps one of t... 详细信息
来源: 评论
PM$^{2}$2VE: Power Metering Model for Virtualization Environments in Cloud data Centers
收藏 引用
IEEE Transactions on Cloud Computing 2023年 第3期11卷 3126-3138页
作者: Ziyu Shen Xusheng Zhang Zheng Liu Yun Li School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Jiangsu Key Laboratory for Big Data Security and Intelligent Processing School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China
Virtualization technologies provide solutions for cloud computing. Virtual resource scheduling is a crucial task in data centers, and the power consumption of virtual resources is a critical foundation of virtualizati... 详细信息
来源: 评论
Community-based Message Forwarding in Mobile Social Networks
Community-based Message Forwarding in Mobile Social Networks
收藏 引用
作者: Zhiming Chen Yang Xiang School of Computer Nanjing University of Posts and Telecommunications Jiangsu Key Laboratory of Big Data Security & Intelligent Processing
With the popularity of various smart devices and the application of sensor network technology, message transmission using mobile devices is becoming *** paper focuses on the forwarding in mobile social network(MSN).Th...
来源: 评论