咨询与建议

限定检索结果

文献类型

  • 158 篇 会议
  • 123 篇 期刊文献

馆藏范围

  • 281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 128 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 51 篇 信息与通信工程
    • 27 篇 生物工程
    • 21 篇 控制科学与工程
    • 20 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 9 篇 网络空间安全
    • 8 篇 化学工程与技术
    • 8 篇 交通运输工程
    • 7 篇 光学工程
    • 7 篇 安全科学与工程
    • 5 篇 仪器科学与技术
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
  • 98 篇 理学
    • 61 篇 数学
    • 30 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 17 篇 物理学
    • 9 篇 化学
    • 9 篇 系统科学
  • 58 篇 管理学
    • 32 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 15 篇 feature extracti...
  • 11 篇 semantics
  • 9 篇 machine learning
  • 9 篇 training
  • 8 篇 conferences
  • 8 篇 task analysis
  • 7 篇 data mining
  • 7 篇 privacy
  • 6 篇 deep learning
  • 6 篇 neural networks
  • 6 篇 optimization
  • 6 篇 forecasting
  • 5 篇 power demand
  • 5 篇 anomaly detectio...
  • 5 篇 computational mo...
  • 5 篇 data models
  • 5 篇 heuristic algori...
  • 4 篇 telecommunicatio...
  • 4 篇 contrastive lear...
  • 4 篇 schedules

机构

  • 59 篇 school of comput...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 30 篇 jiangsu key labo...
  • 16 篇 jiangsu key labo...
  • 15 篇 school of cyber ...
  • 11 篇 nanjing universi...
  • 11 篇 school of comput...
  • 9 篇 nanjing universi...
  • 9 篇 school of comput...
  • 9 篇 peng cheng labor...
  • 8 篇 nanjing universi...
  • 8 篇 key laboratory o...
  • 8 篇 state grid jiang...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 7 篇 school of comput...
  • 7 篇 school of comput...
  • 6 篇 key laboratory o...
  • 6 篇 college of compu...

作者

  • 36 篇 xu xiaolong
  • 26 篇 xiaolong xu
  • 16 篇 huang qingming
  • 16 篇 xu qianqian
  • 15 篇 liu bin
  • 11 篇 yang zhiyong
  • 10 篇 cao xiaochun
  • 9 篇 chen ke-jia
  • 8 篇 jia xu
  • 8 篇 yun li
  • 7 篇 zou zhiqiang
  • 7 篇 xu jia
  • 7 篇 lejun gong
  • 7 篇 lijie xu
  • 7 篇 bin liu
  • 6 篇 lei wang
  • 6 篇 li yun
  • 6 篇 chen xingguo
  • 6 篇 bao shilong
  • 5 篇 xu lijie

语言

  • 271 篇 英文
  • 9 篇 其他
  • 2 篇 中文
检索条件"机构=Jiangsu Key Laboratory of Big Data Security&Intelligent Processing"
281 条 记 录,以下是131-140 订阅
排序:
TSC-ECFA:A Trusted Service Composition Scheme for Edge Cloud
TSC-ECFA:A Trusted Service Composition Scheme for Edge Cloud
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Yu Jiang Xiaolong Xu Kunda Lin Weihua Duan Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China
In order to select a composition scheme that meets user's needs and high performance from large-scale web services in the edge cloud, this paper proposes a trusted service composition optimization scheme called TS... 详细信息
来源: 评论
A Virtual Network Mapping Method Based on Compound Particle Swarm Optimization
A Virtual Network Mapping Method Based on Compound Particle ...
收藏 引用
Cyber security and Information Engineering (ICCSIE), International Conference on
作者: Jianhua Huang Yunlong Tang Yongjun Wei Huan Wang Haifeng Zhang Bing Zhang Liuzhou Key Laboratory of Big Data Intelligent Processing and Security Guangxi Education System Network Security Monitoring Center School of Computer Science and Technology (School of Software) Guangxi University of Science and Technology Liuzhou China Liuzhou Railway Vocational Technical College Liuzhou China
Aiming at problems of low credibility of results and low accuracy of the scheme in the mapping process of virtual networks. It is suggested to use a composite particle swarm optimization approach for virtual network m... 详细信息
来源: 评论
PhotoRedshift-MML: a multimodal machine learning method for estimating photometric redshifts of quasars
arXiv
收藏 引用
arXiv 2022年
作者: Hong, Shuxin Zou, Zhiqiang Luo, A-Li Kong, Xiao Yang, Wenyu Chen, Yanli College of Computer Nanjing University of Posts and Telecommunications Nanjing210023 China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing210023 China CAS Key Laboratory of Optical Astronomy National Astronomical Observatories Beijing100101 China School of Astronomy and Space Science University of Chinese Academy of Sciences Beijing100049 China
We propose a Multimodal Machine Learning method for estimating the Photometric Redshifts of quasars (PhotoRedshift-MML for short), which has long been the subject of many investigations. Our method includes two main m... 详细信息
来源: 评论
Estimating Power Consumption of Containers and Virtual Machines in data Centers
Estimating Power Consumption of Containers and Virtual Machi...
收藏 引用
IEEE International Conference on Cluster Computing
作者: Xusheng Zhang Ziyu Shen Bin Xia Zheng Liu Yun Li Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications
Virtualization technologies provide solutions of cloud computing. Virtual resource scheduling is a crucial task in data centers, and the power consumption of virtual resources is a critical foundation of virtualizatio... 详细信息
来源: 评论
Discrimination-Aware Domain Adversarial Neural Network
收藏 引用
Journal of Computer Science & Technology 2020年 第2期35卷 259-267页
作者: Yun-Yun Wang Jian-Min Gu Chao Wang Song-Can Chen Hui Xue College of Computer Science and Engineering Nanjing University of Posts and Telecommunications Nanjing 210046China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing 210046China College of Computer Science and Technology/College of Artificial Intelligence Nanjing University of Aeronautics and AstronauticsNanjing 210023China Key Laboratory of Pattern Analysis and Machine Intelligence Ministry of Industry and Information Technology Nanjing 210023China School of Computer Science and Engineering Southeast UniversityNanjing 210096China
The domain adversarial neural network(DANN)methods have been successfully proposed and attracted much attention *** DANNs,a discriminator is trained to discriminate the domain labels of features generated by a generat... 详细信息
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China School of Cyber Science and Tech. Sun Yat-sen University Shenzhen Campus China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: He, Junwei Xu, Qianqian Jiang, Yangbangyan Wang, Zitai Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
Graph anomaly detection is crucial for identifying nodes that deviate from regular behavior within graphs, benefiting various domains such as fraud detection and social network. Although existing reconstruction-based ... 详细信息
来源: 评论
Resource allocation in cognitive wireless powered communication networks with wirelessly powered secondary users and primary users
收藏 引用
Science China(Information Sciences) 2019年 第2期62卷 224-229页
作者: Ding XU Qun LI Wireless Communication Key Lab of Jiangsu Province Nanjing University of Posts and Telecommunications Jiangsu Key Lab of Big Data Security and Intelligent Processing Nanjing University of Posts and Telecommunications
Dear editor,Wireless powered communication networks(WPCNs) are popular especially for wireless sensor networks where sensors can be wirelessly powered. For coordinating wireless power and information transfer, Ju and ... 详细信息
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论