咨询与建议

限定检索结果

文献类型

  • 158 篇 会议
  • 122 篇 期刊文献

馆藏范围

  • 280 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 174 篇 工学
    • 128 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 51 篇 信息与通信工程
    • 27 篇 生物工程
    • 21 篇 控制科学与工程
    • 18 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 9 篇 机械工程
    • 9 篇 网络空间安全
    • 8 篇 化学工程与技术
    • 8 篇 交通运输工程
    • 7 篇 光学工程
    • 7 篇 安全科学与工程
    • 5 篇 仪器科学与技术
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
  • 99 篇 理学
    • 62 篇 数学
    • 30 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 18 篇 物理学
    • 9 篇 化学
    • 9 篇 系统科学
  • 58 篇 管理学
    • 32 篇 图书情报与档案管...
    • 28 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 16 篇 feature extracti...
  • 11 篇 semantics
  • 10 篇 training
  • 9 篇 machine learning
  • 8 篇 conferences
  • 8 篇 task analysis
  • 7 篇 deep learning
  • 7 篇 data mining
  • 7 篇 privacy
  • 6 篇 neural networks
  • 6 篇 optimization
  • 6 篇 computational mo...
  • 6 篇 forecasting
  • 5 篇 telecommunicatio...
  • 5 篇 anomaly detectio...
  • 5 篇 heuristic algori...
  • 4 篇 power demand
  • 4 篇 contrastive lear...
  • 4 篇 schedules
  • 4 篇 clustering algor...

机构

  • 58 篇 school of comput...
  • 41 篇 jiangsu key labo...
  • 36 篇 jiangsu key labo...
  • 29 篇 jiangsu key labo...
  • 16 篇 jiangsu key labo...
  • 15 篇 school of cyber ...
  • 11 篇 nanjing universi...
  • 11 篇 school of comput...
  • 9 篇 nanjing universi...
  • 9 篇 school of comput...
  • 9 篇 peng cheng labor...
  • 8 篇 nanjing universi...
  • 8 篇 key laboratory o...
  • 8 篇 state grid jiang...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 7 篇 school of comput...
  • 7 篇 school of comput...
  • 6 篇 key laboratory o...
  • 6 篇 state key labora...

作者

  • 37 篇 xu xiaolong
  • 27 篇 xiaolong xu
  • 16 篇 huang qingming
  • 16 篇 xu qianqian
  • 15 篇 liu bin
  • 11 篇 yang zhiyong
  • 10 篇 cao xiaochun
  • 9 篇 chen ke-jia
  • 8 篇 jia xu
  • 7 篇 yun li
  • 7 篇 xu jia
  • 7 篇 lijie xu
  • 7 篇 bin liu
  • 6 篇 lei wang
  • 6 篇 li yun
  • 6 篇 zou zhiqiang
  • 6 篇 chen xingguo
  • 6 篇 bao shilong
  • 6 篇 lejun gong
  • 5 篇 xu lijie

语言

  • 273 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Jiangsu Key Laboratory of Big Data Security and Intelligent Processing"
280 条 记 录,以下是131-140 订阅
排序:
SCALABLE ATTRIBUTION OF ADVERSARIAL ATTACKS VIA MULTI-TASK LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Guo, Zhongyi Han, Keji Ge, Yao Ji, Wei Li, Yun Nanjing University of Posts and Telecommunications Nanjing China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
Deep neural networks (DNNs) can be easily fooled by adversarial attacks during inference phase when attackers add imperceptible perturbations to original examples, i.e., adversarial examples. Many works focus on adver... 详细信息
来源: 评论
Particle filtering methods for stochastic optimization with application to large-scale empirical risk minimization
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Bin School of Computer Science Nanjing University of Posts and Telecommunications Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing Jiangsu210023 China
There is a recent interest in developing statistical filtering methods for stochastic optimization (FSO) by leveraging a probabilistic perspective of incremental proximity methods (IPMs). The existent FSO methods are ... 详细信息
来源: 评论
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
This paper is concerned with the online estimation of a nonlinear dynamic system from a series of noisy measurements. The focus is on cases wherein outliers are present in-between normal noises. We assume that the out... 详细信息
来源: 评论
Harnessing Low-Fidelity data to Accelerate Bayesian Optimization via Posterior Regularization
Harnessing Low-Fidelity Data to Accelerate Bayesian Optimiza...
收藏 引用
International Conference on big data and Smart Computing (bigCOMP)
作者: Bin Liu School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
Bayesian optimization (BO) is a powerful paradigm for derivative-free global optimization of a black-box objective function (BOF) that is expensive to evaluate. However, the overhead of BO can still be prohibitive for... 详细信息
来源: 评论
Harnessing low-fidelity data to accelerate Bayesian optimization via posterior regularization
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
Bayesian optimization (BO) is a powerful paradigm for derivative-free global optimization of a black-box objective function (BOF) that is expensive to evaluate. However, the overhead of BO can still be prohibitive for... 详细信息
来源: 评论
Robust Particle Filtering via Bayesian Nonparametric Outlier Modeling (Poster)
Robust Particle Filtering via Bayesian Nonparametric Outlier...
收藏 引用
International Conference on Information Fusion
作者: Bin Liu School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China
This paper is concerned with the online estimation of a nonlinear dynamic system from a series of noisy measurements. The focus is on cases wherein outliers are present in-between normal noises. We assume that the out... 详细信息
来源: 评论
LogPal: A Generic Anomaly Detection Scheme of Heterogeneous Logs for Network Systems
收藏 引用
security and Communication Networks 2023年 第1期2023卷
作者: Sun, Lei Xu, Xiaolong Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China
As a key resource for diagnosing and identifying problems, network syslog contains vast quantities of information. And it is the main source of data for anomaly detection of systems. Syslog presents the characteristic... 详细信息
来源: 评论
MNN: Mixed Nearest-Neighbors for Self-Supervised Learning
arXiv
收藏 引用
arXiv 2023年
作者: Long, Xianzhong Peng, Chen Li, Yun School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing210023 China
In contrastive self-supervised learning, positive samples are typically drawn from the same image but in different augmented views, resulting in a relatively limited source of positive samples. An effective way to all... 详细信息
来源: 评论
Dafl: Domain Adaptation-Based Federated Learning for Privacy-Preserving Biometric Recognition
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Zhousheng Yang, Geng Dai, Hua Bai, Yunlu School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Jiangsu Key Laboratory of Big data Security & Intelligent Processing Nanjing210023 China
With the introduction of data protection regulation in various countries, traditional centralized learning for the exploitation of sensitive biological information will gradually become unsustainable. We take face and... 详细信息
来源: 评论
On Link Formation in Heterogeneous Information Networks: A View Based on Multi-Label Learning
On Link Formation in Heterogeneous Information Networks: A V...
收藏 引用
International Conference on Advances in Social Network Analysis and Mining, ASONAM
作者: Ke-Jia Chen Shijun Xue Yun Li Bin Liu Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing Jiangsu China College of Computer Science Nanjing University of Posts and Telecommunications Nanjing Jiangsu China
This paper studies the problem of relationship prediction in heterogeneous information networks. Our goal is not only to predict links/relationships more accurately but also to provide more viable paths to facilitate ... 详细信息
来源: 评论