咨询与建议

限定检索结果

文献类型

  • 130 篇 会议
  • 45 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 176 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 136 篇 工学
    • 92 篇 计算机科学与技术...
    • 79 篇 软件工程
    • 31 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 12 篇 生物工程
    • 11 篇 机械工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 电子科学与技术(可...
    • 10 篇 化学工程与技术
    • 9 篇 农业工程
    • 8 篇 光学工程
    • 7 篇 电气工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 5 篇 网络空间安全
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
  • 67 篇 理学
    • 48 篇 数学
    • 13 篇 生物学
    • 11 篇 化学
    • 8 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 6 篇 系统科学
  • 34 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 10 篇 医学
    • 6 篇 临床医学
    • 5 篇 公共卫生与预防医...
    • 4 篇 基础医学(可授医学...
  • 9 篇 农学
    • 9 篇 作物学
  • 2 篇 法学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 6 篇 information proc...
  • 5 篇 grid computing
  • 4 篇 semantics
  • 4 篇 accuracy
  • 3 篇 educational inst...
  • 3 篇 convolution
  • 3 篇 syntactics
  • 3 篇 feature extracti...
  • 3 篇 routing protocol...
  • 3 篇 natural language...
  • 3 篇 labeling
  • 3 篇 image reconstruc...
  • 3 篇 filtering algori...
  • 3 篇 training
  • 2 篇 computer science
  • 2 篇 learning systems
  • 2 篇 imaging
  • 2 篇 rsa cryptosystem
  • 2 篇 support vector m...
  • 2 篇 compressed sensi...

机构

  • 17 篇 school of comput...
  • 10 篇 college of compu...
  • 9 篇 jiangsu high tec...
  • 8 篇 college of compu...
  • 7 篇 key lab. of broa...
  • 7 篇 provincial key l...
  • 6 篇 school of comput...
  • 6 篇 hubei province k...
  • 6 篇 college of infor...
  • 5 篇 provincial key l...
  • 5 篇 jiangsu provinci...
  • 4 篇 jiangsu provinci...
  • 4 篇 college of compu...
  • 4 篇 first-imaging te...
  • 4 篇 key lab. of broa...
  • 4 篇 school of inform...
  • 4 篇 jiangsu high tec...
  • 4 篇 zhejiang lab
  • 3 篇 institute for in...
  • 3 篇 jiangsu high tec...

作者

  • 14 篇 kong fang
  • 14 篇 zhu qiaoming
  • 10 篇 zhou guodong
  • 8 篇 wang ruchuan
  • 6 篇 yu fei
  • 6 篇 wang yonghao
  • 6 篇 li peifeng
  • 6 篇 hu wei
  • 5 篇 qian peide
  • 4 篇 fei yu
  • 4 篇 qian longhua
  • 4 篇 xizhao luo
  • 4 篇 yanqin zhu
  • 4 篇 ye xiaoguo
  • 4 篇 li renfa
  • 3 篇 li yang
  • 3 篇 yue guangxue
  • 3 篇 li chenglong
  • 3 篇 xu jing
  • 3 篇 wu zhan

语言

  • 170 篇 英文
  • 6 篇 中文
检索条件"机构=Jiangsu Province Key Lab. of Computer Information Processing Technology"
176 条 记 录,以下是151-160 订阅
排序:
Online Attentive Kernel-Based Temporal Difference Learning
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Guang Chen, Xingguo Yang, Shangdong Wang, Huihui Dong, Shaokang Gao, Yang The the Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications National Engineering Laboratory for Agri-Product Quality Traceability Beijing Technology and Business University China The State Key Laboratory for Novel Software Technology Nanjing University China The PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education Jiangsu Key Lab of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology China
With rising uncertainty in the real world, online Reinforcement Learning (RL) has been receiving increasing attention due to its fast learning capability and improving data efficiency. However, online RL often suffers... 详细信息
来源: 评论
LasHeR: A large-scale high-diversity benchmark for RGBT tracking
arXiv
收藏 引用
arXiv 2021年
作者: Li, Chenglong Xue, Wanlin Jia, Yaqing Qu, Zhichen Luo, Bin Tang, Jin Sun, Dengdi Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China
RGBT tracking receives a surge of interest in the computer vision community, but this research field lacks a large-scale and high-diversity benchmark dataset, which is essential for both the training of deep RGBT trac... 详细信息
来源: 评论
3D EAGAN: 3D edge-aware attention generative adversarial network for prostate segmentation in transrectal ultrasound images
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Mengqing Shao, Xiao Jiang, Liping Wu, Kaizhi School of Information Engineering Nanchang Hangkong University Jiangxi Nanchang China School of Computer Science Nanjing University of Information Science and Technology Jiangsu Nanjing China The First Affiliated Hospital of Nanchang University Nanchang University Jiangxi Nanchang China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China
Background: Segment prostates from transrectal ultrasound (TRUS) images plays an essential role in the diagnosis and treatment of prostate cancer. However, traditional segmentation methods are time-consuming and lab.r... 详细信息
来源: 评论
Modeling and Analysis of Pumping Cell of Nox Sensor - Part Ii: Nox Pumping Cell
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Zhen Deng, Zhong-Hua Wang, Jie Lin, Wei-Xun Fu, Xiao-Wei Li, Xi School of Artificial Intelligence and Automation Key Laboratory of Imaging Processing and Intelligent Control Education Ministry Huazhong University of Science and Technology Hubei Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Guangdong Shenzhen518055 China Lambda Company Jiangsu Changzhou213100 China College of Computer Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan University of Science and Technology Hubei Wuhan430081 China
To improve the performance of the NOx sensor, a combined model based on the electrochemical model and the diffusion model is developed for the NOx pumping cell of the NOx sensor. Considering that a small amount of oxy... 详细信息
来源: 评论
On the accurate characterization of quantum-dot light-emitting diodes for display applications
收藏 引用
npj Flexible Electronics 2022年 第1期6卷 351-362页
作者: Wangxiao Jin Yunzhou Deng Bingbing Guo Yaxiao Lian Baodan Zhao Dawei Di Xiaowei Sun Kai Wang Shuming Chen Yixing Yang Weiran Cao Song Chen Wenyu Ji Xuyong Yang Yuan Gao Shuangpeng Wang Huaibin Shen Jialong Zhao Lei Qian Fushan Li Yizheng Jin Key Laboratory of Excited-State Materials of Zhejiang Province State Key Laboratory of Silicon MaterialsDepartment of ChemistryZhejiang University310027 HangzhouChina State Key Laboratory of Modern Optical Instrumentation College of Optical Science and EngineeringInternational Research Center for Advanced PhotonicsZhejiang University310027 HangzhouChina Department of Electronic and Electrical Engineering Southern University of Science and Technology518055 ShenzhenChina TCL Research ShenzhenGuangdongChina Shenzhen China Star Optoelectronics Semiconductor Display Technology Co. LtdShenzhenGuangdongChina College of Chemistry Chemical Engineering and Materials ScienceSoochow University199 Ren’ai Rd215123 SuzhouJiangsuChina Key Lab of Physics and Technology for Advanced Batteries(Ministry of Education) College of PhysicsJilin University130023 ChangchunChina Key Laboratory of Advanced Display and System Applications of Ministry of Education Shanghai University149 Yanchang RoadShanghai 200072China Najing Technology Corporation Ltd Hangzhou 310052China Institute of Applied Physics and Materials Engineering University of MacaoTaipaMacaoSAR 999078China Key Laboratory for Special Functional Materials of Ministry of Education National&Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technologyand Collaborative Innovation Center of Nano Functional Materials and ApplicationsHenan UniversityKaifeng 475004China School of Physical Science and Technology MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and MaterialsGuangxi Key Laboratory of Processing for Non-ferrous Metals and Featured MaterialsGuangxi UniversityNanning 530004China Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo 315201China College of Physics and Information Engineering Fuzhou UniversityFuzhou 350108China
Quantum dot light-emitting diodes(QLEDs)are a class of high-performance solution-processed electroluminescent(EL)devices highly attractive for next-generation display *** the encouraging advances in the mechanism inve... 详细信息
来源: 评论
Apply the Ant Feature of Sensation to Calculate the Minimum Value of Function
Apply the Ant Feature of Sensation to Calculate the Minimum ...
收藏 引用
International Conference on Genetic and Evolutionary Computing (ICGEC)
作者: Chao-Yang Pang Qiong Yang Yan Zhang Ben-Qiong Hu Group of Gene Comput. Key Lab. of Visual Comput. & Virtual Reality of Sichuan Province Chengdu China Information & E-Education Department Sichuan Tourism School Chengdu China College of Computer and Software Shenzhen University Shenzhen Shenzhen China College of Information Management Chengdu University of Technology Chengdu China
Calculating the minimum (or maximum) value of functions is an important problem in optimization field. Applying the method of ant colony optimization (ACO) to solve the problem is an interesting research topic current... 详细信息
来源: 评论
High information Density and Low Coverage Data Storage in DNA with Efficient Channel Coding Schemes
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yi He, Xuan Nguyen, Tuan Thanh Song, Wentu Yakhini, Zohar Yaakobi, Eitan Pan, Linqiang Tang, Xiaohu Cai, Kui Information Coding and Transmission Key Lab of Sichuan Province Southwest Jiaotong University Sichuan Chengdu611756 China Cluster Singapore University of Technology and Design 487372 Singapore Faculty of Computer Science Technion - Israel Institute of Technology Haifa3200003 Israel School of Computer Science RUNI Herzliya4615200 Israel Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Hubei Wuhan430074 China
DNA-based data storage has been attracting significant attention due to its extremely high data storage density, low power consumption, and long duration compared to conventional data storage media. Despite the recent... 详细信息
来源: 评论
Secrecy Analysis of UAV Control information Transmission via NOMA
Secrecy Analysis of UAV Control Information Transmission via...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Zhaoxin Feng Huabing Lu Nan Zhao Zhaoyuan Shi Yunfei Chen Xianbin Wang School of Information and Communication Engineering Dalian University of Technology Dalian China Key Lab. of Intelligent Perception and Computing of Anhui Province Anqing Normal University Anqing China Department of Engineering University of Durham Durham UK Department of Electrical and Computer Engineering Western University London ON Canada
Unmanned aerial vehicle (UAV) assisted wireless communication is essential for the next-generation mobile networks. In coping with the increased dynamics in UAV networks, the design of control information transmission... 详细信息
来源: 评论
Disentangled Generation Network for Enlarged License Plate Recognition and A Unified Dataset
arXiv
收藏 引用
arXiv 2022年
作者: Li, Chenglong Yang, Xiaobin Wang, Guohao Zheng, Aihua Tan, Chang Jia, Ruoran Tang, Jin Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Lab of Intelligent Computing and Signal Processing Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China iFLYTEK Co. Ltd. Hefei230088 China
License plate recognition plays a critical role in many practical applications, but license plates of large vehicles are difficult to be recognized due to the factors of low resolution, contamination, low illumination... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论