咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 107 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 79 篇 工学
    • 62 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 22 篇 信息与通信工程
    • 20 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 控制科学与工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 电气工程
    • 5 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
  • 48 篇 理学
    • 28 篇 数学
    • 23 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 7 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 2 篇 农学
  • 2 篇 医学
    • 1 篇 临床医学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 8 篇 convolution
  • 7 篇 face recognition
  • 6 篇 image fusion
  • 6 篇 semantics
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 3 篇 statistics
  • 3 篇 anomaly detectio...
  • 3 篇 optimization
  • 3 篇 sociology
  • 3 篇 search problems
  • 3 篇 image classifica...
  • 2 篇 semantic segment...
  • 2 篇 zero-shot learni...
  • 2 篇 data mining
  • 2 篇 contrastive lear...
  • 2 篇 covariance matri...
  • 2 篇 pattern recognit...
  • 2 篇 visualization
  • 2 篇 network architec...

机构

  • 51 篇 jiangsu provinci...
  • 19 篇 school of artifi...
  • 10 篇 centre for visio...
  • 7 篇 jiangsu provinci...
  • 6 篇 school of iot en...
  • 6 篇 school of intern...
  • 5 篇 jiangsu provinci...
  • 5 篇 college of inter...
  • 4 篇 college of inter...
  • 3 篇 shandong provinc...
  • 3 篇 the jiangsu prov...
  • 3 篇 jiangnan univers...
  • 2 篇 the center for v...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangsu provinci...
  • 2 篇 school of comput...
  • 2 篇 jiangsu provinci...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangsu provinci...
  • 2 篇 jiangnan univers...

作者

  • 43 篇 wu xiao-jun
  • 20 篇 kittler josef
  • 10 篇 yin he-feng
  • 9 篇 li yueyang
  • 9 篇 luo haichi
  • 9 篇 li hui
  • 8 篇 wu xiaojun
  • 8 篇 fang wei
  • 8 篇 sun jun
  • 7 篇 xu tianyang
  • 7 篇 wang rui
  • 6 篇 wei fang
  • 5 篇 ge hongwei
  • 5 篇 葛洪伟
  • 5 篇 xiao-jun wu
  • 5 篇 xiaojun wu
  • 4 篇 jun sun
  • 4 篇 liu jianjun
  • 4 篇 li zi-qi
  • 4 篇 fu yu

语言

  • 98 篇 英文
  • 8 篇 中文
  • 1 篇 其他
检索条件"机构=Jiangsu Provincial Engineering Laboratory Pattern Recognition and Computational Intelligence"
107 条 记 录,以下是51-60 订阅
排序:
Hierarchical Knowledge Transfer Network for Distantly Supervised Relation Extraction
Hierarchical Knowledge Transfer Network for Distantly Superv...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Wei Song Weishuai Gu School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China
Distantly supervised relation extraction (DSRE) aims to identify the relation between the two entities (e.g. name and location). Most existing methods extract semantic features from each level separately, without taki...
来源: 评论
General and robust voxel feature learning with Transformer for 3D object detection
收藏 引用
Journal of Measurement Science and Instrumentation 2022年 第1期13卷 51-60页
作者: LI Yang GE Hongwei Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Wuxi 214122 China School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
The self-attention networks and Transformer have dominated machine translation and natural language processing fields,and shown great potential in image vision tasks such as image classification and object *** by the ... 详细信息
来源: 评论
Lace Fabric Image Retrieval Using Siamese Neural Network
Lace Fabric Image Retrieval Using Siamese Neural Network
收藏 引用
IEEE International Conference on Signal and Image Processing (ICSIP)
作者: DongDong Xu Yueyang Li HaiChi Luo Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China College of Internet of Things Engineering Jiangnan University Wuxi China
An efficient lace fabric image retrieval method based on DCNN learning features is proposed in this paper. Fine-tuning with Siamese Neural Network is used to learn effective feature of lace fabric image. During the pr... 详细信息
来源: 评论
Cross-modal subspace learning via Kernel correlation maximization and discriminative structure preserving
arXiv
收藏 引用
arXiv 2019年
作者: Yu, Jun Wu, Xiao-Jun School of IoT Engineering Jiangnan University Wuxi214122 China The Jiangsu Provincial Engineering Laboratory of Pattern Recognition Computational Intelligence Jiangnan University Wuxi214122 China
The measure between heterogeneous data is still an open problem. Many research works have been developed to learn a common subspace where the similarity between different modalities can be calculated directly. However... 详细信息
来源: 评论
Unsupervised concatenation hashing via combining subspace learning and graph embedding for cross-Modal image retrieval
arXiv
收藏 引用
arXiv 2019年
作者: Yu, Jun Wu, Xiao-Jun School of IoT Engineering Jiangnan University Wuxi214122 China The Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China
Different from the content-based image retrieval methods, cross-modal image retrieval methods uncover the rich semantic-level information of social images to further understand image contents. As multiple modal data d... 详细信息
来源: 评论
Real-time instance segmentation based on contour learning
收藏 引用
Journal of Measurement Science and Instrumentation 2024年 第3期15卷 328-337页
作者: GE Rui LIU Dengfeng ZHOU Haojie CHAI Zhilei WU Qin School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi 214122China Jiangsu Provincial Engineering Laboratory Pattern Recognition and Computational Intelligence Jiangnan UniversityWuxi 214122China
Instance segmentation plays an important role in image *** Deep Snake algorithm based on contour iteration deforms an initial bounding box to an instance contour end-to-end,which can improve the performance of instanc... 详细信息
来源: 评论
Dual-Branch Reconstruction Network for Industrial Anomaly Detection with RGB-D Data
arXiv
收藏 引用
arXiv 2023年
作者: Bi, Chenyang Li, Yueyang Luo, Haichi Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China College of Internet of Things Engineering Jiangnan University 1800 Lihu Avenue Jiangsu Wuxi China
Unsupervised anomaly detection methods are at the forefront of industrial anomaly detection efforts and have made notable progress. Previous work primarily used 2D information as input, but multi-modal industrial anom... 详细信息
来源: 评论
Multiplication fusion of sparse and collaborative-competitive representation for image classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Zi-Qi Sun, Jun Wu, Xiao-Jun Yin, He-Feng School of Internet of Things Engineering Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China
Representation based classification methods have become a hot research topic during the past few years, and the two most prominent approaches are sparse representation based classification (SRC) and collaborative repr... 详细信息
来源: 评论
A multi-view K-multiple-means clustering method
收藏 引用
Journal of Measurement Science and Instrumentation 2021年 第4期12卷 405-411页
作者: ZHANG Nini GE Hongwei School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi 214122 China
The K-multiple-means(KMM)retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses,and improves its effect on non-convex data *** aiming at the problem that it cannot be appli... 详细信息
来源: 评论
Anomaly detection and segmentation based on multi-student teacher network
收藏 引用
Journal of Measurement Science and Instrumentation 2022年 第2期13卷 235-241页
作者: REN Chaoqiang LIU Dengfeng School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi 214122 China
In automated industrial inspection,it is often necessary to train models on anomaly-free images and perform anomaly detection on products,which is also an important and challenging task in computer *** student-teacher... 详细信息
来源: 评论