咨询与建议

限定检索结果

文献类型

  • 72 篇 期刊文献
  • 33 篇 会议

馆藏范围

  • 105 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 61 篇 计算机科学与技术...
    • 54 篇 软件工程
    • 22 篇 信息与通信工程
    • 20 篇 生物工程
    • 11 篇 光学工程
    • 9 篇 控制科学与工程
    • 7 篇 电子科学与技术(可...
    • 5 篇 机械工程
    • 5 篇 电气工程
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 纺织科学与工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
  • 46 篇 理学
    • 27 篇 数学
    • 22 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 13 篇 管理学
    • 10 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 2 篇 农学
  • 1 篇 艺术学

主题

  • 8 篇 convolution
  • 7 篇 face recognition
  • 6 篇 image fusion
  • 6 篇 semantics
  • 4 篇 deep learning
  • 3 篇 statistics
  • 3 篇 anomaly detectio...
  • 3 篇 optimization
  • 3 篇 feature extracti...
  • 3 篇 sociology
  • 3 篇 search problems
  • 3 篇 image classifica...
  • 2 篇 semantic segment...
  • 2 篇 zero-shot learni...
  • 2 篇 data mining
  • 2 篇 contrastive lear...
  • 2 篇 covariance matri...
  • 2 篇 pattern recognit...
  • 2 篇 visualization
  • 2 篇 network architec...

机构

  • 50 篇 jiangsu provinci...
  • 19 篇 school of artifi...
  • 10 篇 centre for visio...
  • 7 篇 jiangsu provinci...
  • 6 篇 school of iot en...
  • 6 篇 school of intern...
  • 5 篇 jiangsu provinci...
  • 5 篇 college of inter...
  • 4 篇 college of inter...
  • 3 篇 shandong provinc...
  • 3 篇 the jiangsu prov...
  • 2 篇 the center for v...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangsu provinci...
  • 2 篇 jiangsu provinci...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangsu provinci...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangnan univers...
  • 2 篇 jiangsu provinci...

作者

  • 43 篇 wu xiao-jun
  • 20 篇 kittler josef
  • 10 篇 yin he-feng
  • 9 篇 li yueyang
  • 9 篇 luo haichi
  • 9 篇 li hui
  • 8 篇 wu xiaojun
  • 8 篇 fang wei
  • 8 篇 sun jun
  • 7 篇 xu tianyang
  • 7 篇 wang rui
  • 6 篇 wei fang
  • 5 篇 ge hongwei
  • 5 篇 葛洪伟
  • 5 篇 xiao-jun wu
  • 5 篇 xiaojun wu
  • 4 篇 jun sun
  • 4 篇 liu jianjun
  • 4 篇 li zi-qi
  • 4 篇 fu yu

语言

  • 96 篇 英文
  • 8 篇 中文
  • 1 篇 其他
检索条件"机构=Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational"
105 条 记 录,以下是41-50 订阅
排序:
DreamNet: A Deep Riemannian Manifold Network for SPD Matrix Learning  16th
DreamNet: A Deep Riemannian Manifold Network for SPD Matrix...
收藏 引用
16th Asian Conference on Computer Vision, ACCV 2022
作者: Wang, Rui Wu, Xiao-Jun Chen, Ziheng Xu, Tianyang Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China University of Surrey GuildfordGU2 7XH United Kingdom
The methods of symmetric positive definite (SPD) matrix learning have attracted considerable attention in many pattern recognition tasks, as they are eligible to capture and learn appropriate statistical features whil... 详细信息
来源: 评论
Spatial Residual Layer and Dense Connection Block Enhanced Spatial Temporal Graph Convolutional Network for Skeleton-Based Action recognition
Spatial Residual Layer and Dense Connection Block Enhanced S...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Cong Wu Xiao-Jun Wu Josef Kittler School of IOT Engineering Jiangnan University China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence CVSSP University of Surrey UK
Recent research has shown that modeling the dynamic joint features of the human body by a graph convolutional network (GCN) is a groundbreaking approach for skeleton-based action recognition, especially for the recogn... 详细信息
来源: 评论
CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for Better Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Shunfeng Li, Yueyang Luo, Haichi Bi, Chenyang Faculty of Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiang-nan University 1800 Lihu Avenue Jiangsu Wuxi214122 China
In the anomaly detection field, the scarcity of anomalous samples has directed the current research emphasis towards unsupervised anomaly detection. While these unsupervised anomaly detection methods offer convenience... 详细信息
来源: 评论
Robust Pedestrian detection for semi-automatic construction of a crowded person re-identification dataset  1
收藏 引用
10th International Conference on Articulated Motion and Deformable Objects, AMDO 2018
作者: Huang, Zengxi Feng, Zhen-Hua Yan, Fei Kittler, Josef Wu, Xiao-Jun School of Computer and Software Engineering Xihua University Chengdu China Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Machine Intelligence Jiangnan University Wuxi China
The problem of re-identification of people in a crowd commonly arises in real application scenarios, yet it has received less attention than it deserves. To facilitate research focusing on this problem, we have embark... 详细信息
来源: 评论
A Deep Decomposition Network for Image Processing: A Case Study of Image Fusion
SSRN
收藏 引用
SSRN 2022年
作者: Fu, Yu Xu, Tianyang Wu, Xiao-Jun Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China
Image decomposition into constituent components has many applications in the field of image processing. It aims to extract salient features from the source image for subsequent pattern recognition. In this paper, we p... 详细信息
来源: 评论
LE2Fusion: A novel local edge enhancement module for infrared and visible image fusion
arXiv
收藏 引用
arXiv 2023年
作者: Xiao, Yongbiao Li, Hui Cheng, Chunyang Song, Xiaoning Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China
Infrared and visible image fusion task aims to generate a fused image which contains salient features and rich texture details from multi-source images. However, under complex illumination conditions, few algorithms p... 详细信息
来源: 评论
Lace Fabric Image Retrieval Using Siamese Neural Network
Lace Fabric Image Retrieval Using Siamese Neural Network
收藏 引用
IEEE International Conference on Signal and Image Processing (ICSIP)
作者: DongDong Xu Yueyang Li HaiChi Luo Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China College of Internet of Things Engineering Jiangnan University Wuxi China
An efficient lace fabric image retrieval method based on DCNN learning features is proposed in this paper. Fine-tuning with Siamese Neural Network is used to learn effective feature of lace fabric image. During the pr... 详细信息
来源: 评论
Unsupervised concatenation hashing via combining subspace learning and graph embedding for cross-Modal image retrieval
arXiv
收藏 引用
arXiv 2019年
作者: Yu, Jun Wu, Xiao-Jun School of IoT Engineering Jiangnan University Wuxi214122 China The Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China
Different from the content-based image retrieval methods, cross-modal image retrieval methods uncover the rich semantic-level information of social images to further understand image contents. As multiple modal data d... 详细信息
来源: 评论
Cross-modal subspace learning via Kernel correlation maximization and discriminative structure preserving
arXiv
收藏 引用
arXiv 2019年
作者: Yu, Jun Wu, Xiao-Jun School of IoT Engineering Jiangnan University Wuxi214122 China The Jiangsu Provincial Engineering Laboratory of Pattern Recognition Computational Intelligence Jiangnan University Wuxi214122 China
The measure between heterogeneous data is still an open problem. Many research works have been developed to learn a common subspace where the similarity between different modalities can be calculated directly. However... 详细信息
来源: 评论
Dual-Branch Reconstruction Network for Industrial Anomaly Detection with RGB-D Data
arXiv
收藏 引用
arXiv 2023年
作者: Bi, Chenyang Li, Yueyang Luo, Haichi Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China College of Internet of Things Engineering Jiangnan University 1800 Lihu Avenue Jiangsu Wuxi China
Unsupervised anomaly detection methods are at the forefront of industrial anomaly detection efforts and have made notable progress. Previous work primarily used 2D information as input, but multi-modal industrial anom... 详细信息
来源: 评论