咨询与建议

限定检索结果

文献类型

  • 504 篇 会议
  • 385 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 663 篇 工学
    • 479 篇 计算机科学与技术...
    • 401 篇 软件工程
    • 183 篇 信息与通信工程
    • 85 篇 控制科学与工程
    • 75 篇 生物工程
    • 56 篇 电气工程
    • 54 篇 电子科学与技术(可...
    • 54 篇 生物医学工程(可授...
    • 48 篇 光学工程
    • 34 篇 机械工程
    • 32 篇 网络空间安全
    • 30 篇 化学工程与技术
    • 23 篇 动力工程及工程热...
    • 21 篇 安全科学与工程
    • 20 篇 仪器科学与技术
    • 19 篇 交通运输工程
  • 317 篇 理学
    • 175 篇 数学
    • 85 篇 生物学
    • 68 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 31 篇 化学
    • 28 篇 系统科学
  • 201 篇 管理学
    • 108 篇 管理科学与工程(可...
    • 95 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 50 篇 医学
    • 42 篇 临床医学
    • 38 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 22 篇 法学
    • 18 篇 社会学
  • 21 篇 农学
    • 18 篇 作物学
  • 10 篇 教育学
  • 6 篇 军事学
  • 5 篇 经济学
  • 5 篇 文学
  • 4 篇 艺术学
  • 2 篇 哲学

主题

  • 35 篇 feature extracti...
  • 27 篇 semantics
  • 23 篇 image segmentati...
  • 22 篇 convolution
  • 21 篇 training
  • 20 篇 deep learning
  • 16 篇 object detection
  • 16 篇 signal processin...
  • 16 篇 information proc...
  • 15 篇 data mining
  • 13 篇 computer science
  • 13 篇 computational mo...
  • 12 篇 laboratories
  • 12 篇 clustering algor...
  • 12 篇 convolutional ne...
  • 11 篇 optimization
  • 10 篇 support vector m...
  • 10 篇 cryptography
  • 9 篇 speech processin...
  • 9 篇 genetic algorith...

机构

  • 104 篇 provincial key l...
  • 53 篇 college of compu...
  • 52 篇 fujian provincia...
  • 45 篇 school of comput...
  • 42 篇 hunan provincial...
  • 38 篇 fujian provincia...
  • 22 篇 provincial key l...
  • 20 篇 school of comput...
  • 19 篇 school of comput...
  • 18 篇 college of compu...
  • 17 篇 college of elect...
  • 17 篇 guangdong provin...
  • 16 篇 key laboratory o...
  • 16 篇 school of comput...
  • 16 篇 hunan provincial...
  • 15 篇 jiangsu provinci...
  • 15 篇 national enginee...
  • 14 篇 hunan provincial...
  • 14 篇 jiangsu provinci...
  • 14 篇 hunan provincial...

作者

  • 49 篇 li zuoyong
  • 32 篇 zhang fuquan
  • 20 篇 zuoyong li
  • 18 篇 lang li
  • 17 篇 yu fei
  • 17 篇 chen yang
  • 17 篇 li lang
  • 17 篇 fan haoyi
  • 15 篇 gao guangwei
  • 14 篇 teng shenghua
  • 13 篇 kong fang
  • 13 篇 zhu qiaoming
  • 13 篇 dong li
  • 12 篇 jiao ge
  • 12 篇 jiang feibo
  • 10 篇 gao shang
  • 10 篇 zhou guodong
  • 10 篇 zhao huihuang
  • 10 篇 wang kezhi
  • 10 篇 cao cungen

语言

  • 835 篇 英文
  • 33 篇 其他
  • 23 篇 中文
检索条件"机构=Jiangsu Provincial Key Laboratory of Computer Information Processing Technology"
890 条 记 录,以下是791-800 订阅
排序:
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
AdvFAS: a robust face anti-spoofing framework against adversarial examples
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Jiawei Yang, Xiao Yin, Heng Ma, Mingzhi Chen, Bihui Peng, Jianteng Guo, Yandong Yin, Zhaoxia Su, Hang Anhui Provincial Key Laboratory of Multimodal Cognitive Computation Anhui University Hefei230601 China Department of Computer Science and Technology Institute for AI THBI Lab Tsinghua University Beijing100084 China Zhongguancun Laboratory Beijing100080 China OPPO Research Institute Beijing China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai200241 China
Ensuring the reliability of face recognition systems against presentation attacks necessitates the deployment of face anti-spoofing techniques. Despite considerable advancements in this domain, the ability of even the... 详细信息
来源: 评论
Towards real-time eyeblink detection in the wild: Dataset, theory and practices
arXiv
收藏 引用
arXiv 2019年
作者: Hu, Guilei Xiao, Yang Cao, Zhiguo Meng, Lubin Fang, Zhiwen Zhou, Joey Tianyi Yuan, Junsong National Key Laboratory of Science and Technology on Multi-Spectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Guangdong Provincial Key Laboratory of Medical Image Processing School of Biomedical Engineering Southern Medical University China School of Energy and Mechanicalelectronic Engineering Hunan University of Humanities Science and Technology China Institute of High Performance Computing A∗STAR Singapore Computer Science and Engineering Department of University at Buffalo State University of New York United States
Effective and real-time eyeblink detection is of widerange applications, such as deception detection, drive fatigue detection, face anti-spoofing. Despite previous efforts, most of existing focus on addressing the eye... 详细信息
来源: 评论
DRL-M4MR: An Intelligent Multicast Routing Approach Based on DQN Deep Reinforcement Learning in SDN
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Chenwei Ye, Miao Xue, Xingsi Lv, Jianhui Jiang, Qiuxiang Wang, Yong School of Information and Communication Guilin University of Electronic Technology Guilin541004 China Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing Guilin University of Electronic Technology Guilin541004 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fujian Fuzhou350118 China Peng Cheng Lab. Guangdong Shenzhen518038 China School of Computer Science and Information Security Guilin University of Electronic Technology Guilin541004 China
Traditional multicast routing methods have some problems in constructing a multicast tree, such as limited access to network state information, poor adaptability to dynamic and complex changes in the network, and infl... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Multiscale Low-Frequency Memory Network for Improved Feature Extraction in Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Fuzhi Wu, Jiasong Kong, Youyong Yang, Chunfeng Yang, Guanyu Shu, Huazhong Carrault, Guy Senhadji, Lotfi Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Bangladesh Laboratoire Traitement du Signal et de l'Image Univ Rennes France Centre de Recherche en Information Biomédicale Sino-français CRIBs France Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing Southeast University Bangladesh
Deep learning and Convolutional Neural Networks (CNNs) have driven major transformations in diverse research areas. However, their limitations in handling low-frequency information present obstacles in certain tasks l... 详细信息
来源: 评论
Explainable Semantic Federated Learning Enabled Industrial Edge Network for Fire Surveillance
arXiv
收藏 引用
arXiv 2024年
作者: Dong, Li Peng, Yubo Jiang, Feibo Wang, Kezhi Yang, Kun School of Computer Science Hunan University of Technology and Business Changsha410205 China Xiangjiang Laboratory Changsha410205 China School of Intelligent Software and Engineering Nanjing University Suzhou China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China Department of Computer Science Brunel University London United Kingdom
In fire surveillance, Industrial Internet of Things (IIoT) devices require transmitting large monitoring data frequently, which leads to huge consumption of spectrum resources. Hence, we propose an Industrial Edge Sem... 详细信息
来源: 评论
Modeling and Analysis of Pumping Cell of Nox Sensor - Part Ii: Nox Pumping Cell
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Zhen Deng, Zhong-Hua Wang, Jie Lin, Wei-Xun Fu, Xiao-Wei Li, Xi School of Artificial Intelligence and Automation Key Laboratory of Imaging Processing and Intelligent Control Education Ministry Huazhong University of Science and Technology Hubei Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Guangdong Shenzhen518055 China Lambda Company Jiangsu Changzhou213100 China College of Computer Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan University of Science and Technology Hubei Wuhan430081 China
To improve the performance of the NOx sensor, a combined model based on the electrochemical model and the diffusion model is developed for the NOx pumping cell of the NOx sensor. Considering that a small amount of oxy... 详细信息
来源: 评论
Heterogeneous two-Stream Network with Hierarchical Feature Prefusion for Multispectral Pan-Sharpening
Heterogeneous two-Stream Network with Hierarchical Feature P...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Dong Wang Yunpeng Bai Bendu Bai Chanyue Wu Ying Li National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science Northwestern Polytechnical University Xi'an China School of Communication and Information Engineering Xi’an University of Posts and Telecommunications Xi'an China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech & Image Information Processing Northwestern Polytechnical University Xi'an China
Multispectral (MS) pan-sharpening aims at producing a high spatial resolution (HR) MS image by fusing a single-band HR panchromatic (PAN) image and a corresponding MS image with low spatial resolution. In this paper, ... 详细信息
来源: 评论
Decision-Based Iterative Fragile Watermarking for Model Integrity Verification
SSRN
收藏 引用
SSRN 2023年
作者: Yin, Zhaoxia Yin, Heng Su, Hang Zhang, Xinpeng Gao, Zhenzhe Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai Shanghai200241 China Anhui Provincial Key Laboratory of Multimodal Cognitive Computation Anhui University Anhui Hefei230000 China Department of Computer Science and Technology Tsinghua University Beijing Beijing100000 China School of Computer Science and Technology Fudan University Shanghai Shanghai200241 China School of Communication and Electronic Engineering East China Normal University Shanghai Shanghai200241 China
Foundation models are commonly hosted on cloud servers to cater to the high demand for their services. However, this exposes them to security risks, as attackers can manipulate these models by introducing backdoor pat... 详细信息
来源: 评论