咨询与建议

限定检索结果

文献类型

  • 503 篇 会议
  • 373 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 877 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 654 篇 工学
    • 476 篇 计算机科学与技术...
    • 401 篇 软件工程
    • 179 篇 信息与通信工程
    • 82 篇 控制科学与工程
    • 75 篇 生物工程
    • 54 篇 生物医学工程(可授...
    • 49 篇 电气工程
    • 47 篇 光学工程
    • 47 篇 电子科学与技术(可...
    • 34 篇 机械工程
    • 31 篇 网络空间安全
    • 30 篇 化学工程与技术
    • 23 篇 动力工程及工程热...
    • 22 篇 安全科学与工程
    • 19 篇 交通运输工程
    • 18 篇 仪器科学与技术
  • 312 篇 理学
    • 174 篇 数学
    • 84 篇 生物学
    • 66 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 29 篇 系统科学
    • 28 篇 化学
  • 199 篇 管理学
    • 108 篇 管理科学与工程(可...
    • 94 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 47 篇 医学
    • 41 篇 临床医学
    • 36 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 22 篇 法学
    • 18 篇 社会学
  • 21 篇 农学
    • 18 篇 作物学
  • 10 篇 教育学
  • 6 篇 军事学
  • 5 篇 经济学
  • 5 篇 文学
  • 4 篇 艺术学
  • 2 篇 哲学

主题

  • 35 篇 feature extracti...
  • 27 篇 semantics
  • 22 篇 image segmentati...
  • 22 篇 convolution
  • 21 篇 training
  • 19 篇 deep learning
  • 16 篇 signal processin...
  • 16 篇 information proc...
  • 15 篇 object detection
  • 15 篇 data mining
  • 13 篇 computer science
  • 13 篇 computational mo...
  • 12 篇 laboratories
  • 12 篇 clustering algor...
  • 11 篇 optimization
  • 11 篇 convolutional ne...
  • 10 篇 support vector m...
  • 10 篇 cryptography
  • 9 篇 speech processin...
  • 9 篇 genetic algorith...

机构

  • 104 篇 provincial key l...
  • 52 篇 fujian provincia...
  • 50 篇 college of compu...
  • 45 篇 school of comput...
  • 41 篇 hunan provincial...
  • 38 篇 fujian provincia...
  • 22 篇 provincial key l...
  • 20 篇 school of comput...
  • 19 篇 school of comput...
  • 18 篇 college of compu...
  • 17 篇 college of elect...
  • 17 篇 guangdong provin...
  • 16 篇 key laboratory o...
  • 16 篇 school of comput...
  • 16 篇 hunan provincial...
  • 15 篇 national enginee...
  • 14 篇 hunan provincial...
  • 14 篇 jiangsu provinci...
  • 13 篇 school of electr...
  • 13 篇 jiangsu provinci...

作者

  • 49 篇 li zuoyong
  • 31 篇 zhang fuquan
  • 20 篇 zuoyong li
  • 17 篇 yu fei
  • 17 篇 li lang
  • 16 篇 fan haoyi
  • 16 篇 lang li
  • 15 篇 gao guangwei
  • 15 篇 chen yang
  • 14 篇 teng shenghua
  • 14 篇 dong li
  • 13 篇 kong fang
  • 13 篇 zhu qiaoming
  • 13 篇 jiang feibo
  • 12 篇 jiao ge
  • 11 篇 wang kezhi
  • 10 篇 gao shang
  • 10 篇 zhou guodong
  • 10 篇 cao cungen
  • 10 篇 yang chen

语言

  • 826 篇 英文
  • 29 篇 其他
  • 23 篇 中文
检索条件"机构=Jiangsu Provincial Key Laboratory of Computer Information Processing Technology"
877 条 记 录,以下是851-860 订阅
排序:
Fast Semantic Preserving Hashing for Large-Scale Cross-Modal Retrieval
Fast Semantic Preserving Hashing for Large-Scale Cross-Modal...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Xingzhi Wang Xin Liu Shujuan Peng Yiu-ming Cheung Zhikai Hu Nannan Wang Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China State Key Lab. of Integrated Services Networks & School of Telecommun. Eng. Xidian University Xi’an China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou China Dept. of Comput. Sci. and Institute of Research and Continuing Education HK Baptist University Hong Kong SAR China
Most Cross-modal hashing methods do not sufficiently exploit the discrimination power of semantic information when learning hash codes, while often involving time-consuming training procedures for large-scale dataset....
来源: 评论
Towards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Zhu, Hongze Xie, Guoyang Hou, Chengbin Dai, Tao Gao, Can Wang, Jinbao Shen, Linlin National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science City University of Hong Kong Hong Kong Department of Intelligent Manufacturing CATL Ningde China Fuzhou Fuyao Institute for Advanced Study Fuyao University of Science and Technology Fuzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
High-resolution point clouds (HRPCD) anomaly detection (AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they ... 详细信息
来源: 评论
Overview of the CCKS 2019 knowledge graph evaluation track: Entity, relation, event and QA
arXiv
收藏 引用
arXiv 2020年
作者: Han, Xianpei Wang, Zhichun Zhang, Jiangtao Wen, Qinghua Li, Wenqi Tang, Buzhou Wang, Qi Feng, Zhifan Zhang, Yang Lu, Yajuan Wang, Haitao Chen, Wenliang Shao, Hao Chen, Yubo Liu, Kang Zhao, Jun Wang, Taifeng Zhang, Kezun Wang, Meng Jiang, Yinlin Qi, Guilin Zou, Lei Hu, Sen Zhang, Minhao Lin, Yinnian Chinese Information Processing Laboratory Institute of Software Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence Beijing Normal University Beijing100875 China 305 Hospital of People’s Liberation Army Beijing100017 China Department of Computer Science and Technology Tsinghua University Beijing100084 China Yidu Cloud Beijing100000 China Harbin Institute of Technology Shenzhen Guangdong518055 China Baidu Beijing100193 China School of Computer Science & Technology Soochow University Suzhou Jiangsu215006 China Gowild Suzhou Jiangsu215002 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China Ant Financial Hangzhou Zhejiang310000 China School of Computer Science and Engineering Southeast University Nanjing Jiangsu211189 China Key Laboratory of Computer Network Information Integration Southeast University Nanjing Jiangsu211189 China Peking University Beijing100871 China
Knowledge graph models world knowledge as concepts, entities, and the relationships between them, which has been widely used in many real-world tasks. CCKS 2019 held an evaluation track with 6 tasks and attracted more... 详细信息
来源: 评论
Denoising of 3D magnetic resonance images using a residual encoder-decoder wasserstein generative adversarial network
arXiv
收藏 引用
arXiv 2018年
作者: Ran, Maosong Hu, Jinrong Chen, Yang Chen, Hu Sun, Huaiqiang Zhou, Jiliu Zhang, Yi College of Computer Science Sichuan University Chengdu610065 China Department of Computer Science Chengdu University of Information Technology Chengdu610225 China Lab of Image Science and Technology School of Computer Science and Engineering Southeast University Nanjing210096 China School of Cyber Science and Engineering Southeast University Nanjing210096 China Ministry of Education Nanjing210096 China Department of Radiology West China Hospital of Sichuan University Chengdu610041 China Guangdong Provincial Key Laboratory of Medical Image Processing Southern Medical University Guangzhou510515 China
Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in medical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. In th... 详细信息
来源: 评论
ReactFace: Online Multiple Appropriate Facial Reaction Generation in Dyadic Interactions
arXiv
收藏 引用
arXiv 2023年
作者: Luo, Cheng Song, Siyang Xie, Weicheng Spitale, Micol Ge, Zongyuan Shen, Linlin Gunes, Hatice Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China Department of Computer Science University of Nottingham Ningbo China Ningbo315100 China Computer Sciences University of Exeter ExeterEX4 4PY United Kingdom Department of Computer Science and Technology University of Cambridge CambridgeCB3 0FT United Kingdom Airdoc-Monash Research Centre Monash University Faculty of IT Monash University Melbourne Australia
In dyadic interaction, predicting the listener’s facial reactions is challenging as different reactions could be appropriate in response to the same speaker’s behaviour. Previous approaches predominantly treated thi... 详细信息
来源: 评论
An Improved Epsilon Constraint Handling Method Embedded in MOEA/D for Constrained Multi-objective Optimization Problems
An Improved Epsilon Constraint Handling Method Embedded in M...
收藏 引用
IEEE Symposium Series on Computational Intelligence
作者: Zhun Fan Wenji Li Xinye Cai Hui Li Han Huang Zhaoquan Cai Caimin Wei Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Department of Electronic Engineering Shantou University 515063 China School of Mathematics and Statistics Xi'an Jiaotong University Shaanxi 710049 China Department of Mathematics Shantou University Guangdong 515063 China Department of Electronic Engineering Shantou University Guangdong 515063 China School of Software Engineering South China University of Technology Guangdong Guangzhou 510006 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu 210016 China Department of Computer Science Huizhou University Guangdong 516007 China
This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve constrained multi-objective optimization problems (CMO... 详细信息
来源: 评论
Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation
arXiv
收藏 引用
arXiv 2021年
作者: Jin, Yu Zhang, Jiayi Huang, Chongwen Yang, Liang Xiao, Huahua Ai, Bo Wang, Zhiqin The School of Electronic and Information Engineering Beijing Jiaotong University Beijing100044 China The Frontiers Science Center for Smart High-speed Railway System Beijing Jiaotong University Beijing100044 China Zhejiang Provincial Key Lab of Information Processing Communication and Networking Zhejiang University Hangzhou310007 China College of Computer Science and Electronic Engineering Hunan University Changsha410082 China ZTE Corporation State Key Laboratory of Mobile Network Mobile Multimedia Technology Shenzhen518057 China State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing100044 China Henan Joint International Research Laboratory of Intelligent Networking and Data Analysis Zhengzhou University Zhengzhou450001 China Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen518055 China China Academy of Information and Communications Technology Beijing100191 China
Reconfigurable intelligent surface (RIS) constitutes an essential and promising paradigm that relies programmable wireless environment and provides capability for space-intensive communications, due to the use of low-... 详细信息
来源: 评论
Energy-efficient resource allocation in noma heterogeneous networks
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Haijun Fang, Fang Cheng, Julian Long, Keping Wang, Wei Leung, Victor C.M. Engineering and Technology Research Center for Convergence Networks University of Science and Technology Beijing Beijing100083 China School of Engineering University of British Columbia KelownaBCV1X 1V7 Canada College of Information Science and Electronic Engineering Zhejiang University Hangzhou310027 China Zhejiang Provincial Key Laboratory of Information Processing Communication and Networking Hangzhou310027 China Department of Electrical and Computer Engineering University of British Columbia VancouverBCV6T 1Z4 Canada
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can sa... 详细信息
来源: 评论
Constrained Multi-scale Dense Connections for Accurate Biomedical Image Segmentation
Constrained Multi-scale Dense Connections for Accurate Biome...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Jiawei Zhang Yanchun Zhang Shanfeng Zhu Xiaowei Xu Shanghai key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou China College of Engineering and Science Victoria University Melbourne Australia ISTBI and Shanghai Institute of Artificial Intelligence Algorithms Fudan University Shanghai China Nanjing University Institute of Artificial Intelligence Biomedicine Nanjing China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China Guangdong Provincial People’s Hospital Guangdong Cardiovascular Institute Guangzhou China
Biomedical image segmentation plays a critical role in clinical diagnosis and medical intervention. Recently, a variety of deep neural networks have boosted the biomedical image segmentation performance with a large m... 详细信息
来源: 评论
Trajectory Grouping with Curvature Regularization for Tubular Structure Tracking
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Li Chen, Da Shu, Minglei Li, Baosheng Shu, Huazhong Paques, Michel Cohen, Laurent D. Qilu University of Technology Shandong Academy of Sciences Shandong Artificial Intelligence Institute Jinan250014 China Shandong's Key Laboratory of Radiation Oncology Shandong Cancer Hospital Shandong Academy of Medical Sciences Jinan China Department of Radiation Oncology Shandong Cancer Hospital & Institute Shandong Academy of Medical Sciences Jinan China Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Southeast University Nanjing210096 China The Centre Hospitalier National dOphtalmologie des Quinze-Vingts Paris France University Paris Dauphine PSL Research University CNRS UMR 7534 CEREMADE Paris75016 France
Tubular structure tracking is a crucial task in the fields of computer vision and medical image analysis. The minimal paths-based approaches have exhibited their strong ability in tracing tubular structures, by which ... 详细信息
来源: 评论