咨询与建议

限定检索结果

文献类型

  • 148 篇 会议
  • 93 篇 期刊文献

馆藏范围

  • 241 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 149 篇 工学
    • 112 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 45 篇 信息与通信工程
    • 21 篇 电气工程
    • 20 篇 生物工程
    • 19 篇 控制科学与工程
    • 10 篇 机械工程
    • 10 篇 电子科学与技术(可...
    • 8 篇 网络空间安全
    • 7 篇 光学工程
    • 7 篇 化学工程与技术
    • 7 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
  • 75 篇 理学
    • 48 篇 数学
    • 28 篇 统计学(可授理学、...
    • 22 篇 生物学
    • 13 篇 物理学
    • 9 篇 系统科学
    • 7 篇 化学
    • 3 篇 地球物理学
  • 50 篇 管理学
    • 29 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 6 篇 法学
    • 5 篇 社会学
  • 4 篇 医学
    • 4 篇 临床医学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 13 篇 feature extracti...
  • 10 篇 semantics
  • 8 篇 task analysis
  • 7 篇 conferences
  • 7 篇 privacy
  • 6 篇 neural networks
  • 6 篇 optimization
  • 6 篇 data mining
  • 6 篇 machine learning
  • 6 篇 forecasting
  • 6 篇 training
  • 5 篇 deep learning
  • 5 篇 sensors
  • 4 篇 power demand
  • 4 篇 telecommunicatio...
  • 4 篇 quality of servi...
  • 4 篇 schedules
  • 4 篇 wireless sensor ...
  • 4 篇 computational mo...
  • 4 篇 clustering algor...

机构

  • 58 篇 school of comput...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 30 篇 jiangsu key labo...
  • 16 篇 jiangsu key labo...
  • 12 篇 nanjing universi...
  • 9 篇 key lab. of inte...
  • 9 篇 nanjing universi...
  • 9 篇 school of comput...
  • 8 篇 school of comput...
  • 8 篇 nanjing universi...
  • 8 篇 state grid jiang...
  • 7 篇 school of comput...
  • 7 篇 peng cheng labor...
  • 6 篇 college of compu...
  • 6 篇 jiangsu key labo...
  • 6 篇 school of cyber ...
  • 6 篇 school of comput...
  • 6 篇 key laboratory o...
  • 5 篇 nanjing universi...

作者

  • 36 篇 xu xiaolong
  • 27 篇 xiaolong xu
  • 15 篇 liu bin
  • 10 篇 yang geng
  • 9 篇 chen ke-jia
  • 8 篇 jia xu
  • 8 篇 yun li
  • 7 篇 zou zhiqiang
  • 7 篇 xu jia
  • 7 篇 dai hua
  • 7 篇 lijie xu
  • 7 篇 bin liu
  • 6 篇 lei wang
  • 6 篇 geng yang
  • 6 篇 li yun
  • 6 篇 huang qingming
  • 6 篇 chen xingguo
  • 6 篇 cao xiaochun
  • 6 篇 lejun gong
  • 6 篇 xu qianqian

语言

  • 231 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Jiangsu Security and Intelligent Processing Lab of Big Data"
241 条 记 录,以下是221-230 订阅
排序:
On link formation in heterogeneous information networks: A view based on multi-label learning  9
On link formation in heterogeneous information networks: A v...
收藏 引用
9th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017
作者: Chen, Ke-Jia Xue, Shijun Li, Yun Liu, Bin Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing Jiangsu210023 China College of Computer Science Nanjing University of Posts and Telecommunications Nanjing Jiangsu210023 China Center for the Neural Basis of Cognition Carnegie Mellon University PittsburghPA15213 United States
This paper studies the problem of relationship prediction in heterogeneous information networks. Our goal is not only to predict links/relationships more accurately but also to provide more viable paths to facilitate ... 详细信息
来源: 评论
ILAPF: INCREMENTAL LEARNING ASSISTED PARTICLE FILTERING
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Bin School of Computer Science Jiangsu Key Lab of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China
This paper is concerned with dynamic system state estimation based on a series of noisy measurement with the presence of outliers. An incremental learning assisted particle filtering (ILAPF) method is presented, which... 详细信息
来源: 评论
WISERNet: Wider Separate-then-reunion Network for Steganalysis of Color Images
arXiv
收藏 引用
arXiv 2018年
作者: Zeng, Jishen Tan, Shunquan Liu, Guangqing Li, Bin Huang, Jiwu Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China College of Computer Science and Software Engineering Shenzhen University Guangdong Key Lab. of Intelligent Info. Processing and Shenzhen Key Laboratory of Media Security Shenzhen University Shenzhen518060 China Peng Cheng Laboratory Shenzhen518052 China
Until recently, deep steganalyzers in spatial domain have been all designed for gray-scale images. In this paper, we propose WISERNet (the wider separate-then-reunion network) for steganalysis of color images. We prov... 详细信息
来源: 评论
Itrace: An implicit trust inference method for trust-aware collaborative filtering
arXiv
收藏 引用
arXiv 2017年
作者: He, Xu Liu, Bin Chen, Ke-Jia School of Computer Science Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing Jiangsu210023 China
The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A CF algorithmrecommends items of interest to the target user by leveraging the votes given by ... 详细信息
来源: 评论
ITrace: An implicit trust inference method for trust-aware collaborative filtering
收藏 引用
AIP Conference Proceedings 2018年 第1期1955卷
作者: Xu He Bin Liu Kejia Chen School of Computer Science Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A CF algorithm recommends items of interest to the target user by leveraging the votes given by...
来源: 评论
Maximum Likelihood Estimation based on Random Subspace EDA: Application to extrasolar planet detection
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Bin Chen, Ke-Jia School of Computer Science Nanjing University of Posts and Telecommunications Nanjing Jiangsu210023 China Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing Jiangsu210023 China
This paper addresses maximum likelihood (ML) estimation based model fitting in the context of extrasolar planet detection. This problem is featured by the following properties: 1) the candidate models under considerat... 详细信息
来源: 评论
Recommendation system based on trusted relation transmission
Recommendation system based on trusted relation transmission
收藏 引用
International Conference on intelligent System and Knowledge Engineering, ISKE
作者: Yixiong Bian Huakang Li Jiangsu Key Lab of Big Data and Security and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China State Key Laboratory of Mathematical Engineering and Advanced Computing Wuxi China
With the rapid development of the internet, applications of recommendation systems for online shops and entertainment platforms become more and more popular. In order to improve the effectiveness of recommendation, ex... 详细信息
来源: 评论
Implementation and performance op timization of dynamic random forest
Implementation and performance op timization of dynamic rand...
收藏 引用
第九届网络分布式计算与知识发现国际会议( 2017 International Conference on Cyber-enabled distributed computing and knowledge discovery)
作者: Xiaolong Xu Wen Chen School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and
Bernard combines the weight updating of the boosting algorithm with the Random Forest(RF),and proposes a new RF induction algorithm called Dynamic Random Forest(DRF).The idea with DRF is to grow only trees that would ... 详细信息
来源: 评论
On Link Formation in Heterogeneous Information Networks: A View Based on Multi-label Learning
On Link Formation in Heterogeneous Information Networks: A V...
收藏 引用
International Conference on Advances in Social Network Analysis and Mining, ASONAM
作者: Ke-Jia Chen Shijun Xue Yun Li Bin Liu Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing Jiangsu China College of Computer Science Nanjing University of Posts and Telecommunications Nanjing Jiangsu China
This paper studies the problem of relationship prediction in heterogeneous information networks. Our goal is not only to predict links/relationships more accurately but also to provide more viable paths to facilitate ... 详细信息
来源: 评论
Deep User Modeling for Content-based Event Recommendation in Event-based Social Networks
Deep User Modeling for Content-based Event Recommendation in...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Zhibo Wang Yongquan Zhang Honglong Chen Zhetao Li Feng Xia Jiangsu Key Lab. of Big Data Security & Intelligent Processing NJUPT P. R. China School of Cyber Science and Engineering Wuhan University P. R. China College of Information and Control Engineering China University of Petroleum P. R. China College of Information Engineering Xiangtan University P. R. China School of Software Dalian University of Technology P. R. China
Event-based social networks (EBSNs) are the newly emerging social platforms for users to publish events online and attract others to attend events offline. The content information of events plays an important role in ... 详细信息
来源: 评论