咨询与建议

限定检索结果

文献类型

  • 134 篇 会议
  • 130 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 265 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 186 篇 工学
    • 156 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 37 篇 信息与通信工程
    • 15 篇 电气工程
    • 12 篇 化学工程与技术
    • 9 篇 生物工程
    • 8 篇 交通运输工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 5 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 4 篇 环境科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 3 篇 网络空间安全
  • 67 篇 管理学
    • 47 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 58 篇 理学
    • 36 篇 数学
    • 12 篇 化学
    • 12 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 7 篇 物理学
    • 3 篇 系统科学
  • 8 篇 法学
    • 6 篇 社会学
  • 6 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 18 篇 xml
  • 15 篇 semantics
  • 6 篇 knowledge engine...
  • 5 篇 query processing
  • 5 篇 dynamic programm...
  • 5 篇 forecasting
  • 4 篇 object detection
  • 4 篇 finance
  • 4 篇 contrastive lear...
  • 4 篇 feature extracti...
  • 4 篇 extraction
  • 4 篇 clustering algor...
  • 4 篇 data models
  • 4 篇 training
  • 4 篇 multi-attribute ...
  • 4 篇 heuristic algori...
  • 3 篇 collaborative fi...
  • 3 篇 adversarial lear...
  • 3 篇 zero-shot learni...
  • 3 篇 graphics process...

机构

  • 33 篇 school of inform...
  • 32 篇 jiangxi key labo...
  • 22 篇 school of inform...
  • 18 篇 key lab of data ...
  • 16 篇 jiangxi univ fin...
  • 11 篇 jiangxi key labo...
  • 10 篇 jiangxi univ fin...
  • 8 篇 jiangxi univ fin...
  • 8 篇 school of inform...
  • 8 篇 key laboratory o...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 7 篇 university of ch...
  • 7 篇 jiangxi univ fin...
  • 7 篇 peng cheng labor...
  • 7 篇 school of comput...
  • 7 篇 school of cyber ...
  • 7 篇 key lab of big d...
  • 7 篇 key lab of data ...
  • 6 篇 school of inform...

作者

  • 33 篇 wan changxuan
  • 29 篇 li xirong
  • 28 篇 liu dexi
  • 18 篇 liu xiping
  • 17 篇 chen hong
  • 15 篇 li cuiping
  • 15 篇 liao guoqiong
  • 12 篇 huang qingming
  • 12 篇 xu qianqian
  • 11 篇 yang gang
  • 11 篇 cao xiaochun
  • 11 篇 wan qizhi
  • 10 篇 liu jun
  • 9 篇 xiao keli
  • 7 篇 hu rong
  • 6 篇 dexi liu
  • 6 篇 cao juan
  • 6 篇 changxuan wan
  • 6 篇 hong chen
  • 6 篇 zhang lingling

语言

  • 252 篇 英文
  • 8 篇 其他
  • 5 篇 中文
检索条件"机构=Jiangxi Key Lab of Data and Knowledge Engineering"
265 条 记 录,以下是1-10 订阅
排序:
An improved Bert learning model for E-commerce text entity extraction
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第4期81卷 1-28页
作者: Fan, Huiqiong Wan, Changxuan Jiangxi Univ Finance & Econ Sch Informat Management Nanchang 330032 Jiangxi Peoples R China Jiangxi Univ Finance & Econ Jiangxi Key Lab Data & Knowledge Engn Nanchang 330013 Jiangxi Peoples R China
In response to the intricate and non-standardized nature of e-commerce product descriptions, we propose an enhanced BERT-BiLSTM-CRF entity extraction model to address the limitations of existing models in accurately e... 详细信息
来源: 评论
A Multifocal Graph-Based Neural Network Scheme for Topic Event Extraction
收藏 引用
ACM TRANSACTIONS ON INFORMATION SYSTEMS 2025年 第1期43卷 1-36页
作者: Wan, Qizhi Wan, Changxuan Xiao, Keli Hu, Rong Liu, Dexi Liao, Guoqiong Liu, Xiping Shuai, Yuxin Jiangxi Univ Finance & Econ Sch Comp & Artificial Intelligence Nanchang Peoples R China Jiangxi Key Lab Data & Knowledge Engn Nanchang Peoples R China SUNY Stony Brook Coll Business Stony Brook NY 11794 USA
Event extraction is a long-standing and challenging task in natural language processing, and existing studies mainly focus on extracting events within sentences. However, a significant problem that has not been carefu... 详细信息
来源: 评论
A Part-of-Speech Tagging Model Employing Word Clustering and Syntactic Parsing
收藏 引用
Chinese Journal of Electronics 2025年 第1期23卷 109-114页
作者: Lichi Yuan School of Information Technology Jiangxi University of Finance and Economics Nanchang China Jiangxi Key Laboratory of Data and Knowledge Engineering Jiangxi University of Finance and Economics Nanchang China
Part-Of-Speech tagging is a basic task in the field of natural language processing. This paper builds a POS tagger based on improved Hidden Markov model, by employing word clustering and syntactic parsing model. First...
来源: 评论
LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Yuxuan Zhang, Jing Chen, Xiaodong Zhao, Zhe Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering Beijing China Engineering Research Center of Database and Business Intelligence Beijing China Tencent AI Lab Beijing China
Existing low-rank adaptation (LoRA) methods face challenges on sparse large language models (LLMs) due to the inability to maintain sparsity. Recent works introduced methods that maintain sparsity by augmenting LoRA t... 详细信息
来源: 评论
Improved head-driven statistical models for natural language parsing
收藏 引用
Journal of Central South University 2013年 第10期20卷 2747-2752页
作者: 袁里驰 School of Information Technology Jiangxi University of Finance and Economics Jiangxi Key Laboratory of Data and Knowledge Engineering Jiangxi University of Finance and Economics
Head-driven statistical models for natural language parsing are the most representative lexicalized syntactic parsing models, but they only utilize semantic dependency between words, and do not incorporate other seman... 详细信息
来源: 评论
A Part-of-speech Tagging Model Employing Word Clustering and Syntactic Parsing
收藏 引用
Chinese Journal of Electronics 2014年 第1期23卷 109-114页
作者: YUAN Lichi School of Information Technology Jiangxi University of Finance and Economics Jiangxi Key Laboratory of Data and Knowledge Engineering Jiangxi University of Finance and Economics
Part-Of-Speech tagging is a basic task in the field of natural language processing. This paper builds a POS tagger based on improved Hidden Markov model,by employing word clustering and syntactic parsing ***, In order... 详细信息
来源: 评论
Structural Join and Staircase Join Algorithms of Sibling Relationship
收藏 引用
Journal of Computer Science & Technology 2007年 第2期22卷 171-181页
作者: 万常选 刘喜平 School of Information Technology Jiangxi University of Finance and Economics Nanchang 330013 China Jiangxi Key Laboratory of Data and Knowledge Engineering Nanchang 330013 China
The processing of XML queries can result in evaluation of various structural relationships. Efficient algorithms for evaluating ancestor-descendant and parent-child relationships have been proposed. Whereas the proble... 详细信息
来源: 评论
Preventing Recommendation Attack in Trust-Based Recommender Systems
收藏 引用
Journal of Computer Science & Technology 2011年 第5期26卷 823-828页
作者: 张富国 School of Information and Technology Jiangxi University of Finance and Economics Institute of Information Resource Management Jiangxi University of Finance and Economics Jiangxi Key Laboratory of Data and Knowledge Engineering Jiangxi University of Finance and Economics
Despite its success,similarity-based collaborative filtering suffers from some limitations,such as scalability,sparsity and recommendation *** work has shown incorporating trust mechanism into traditional collaborativ... 详细信息
来源: 评论
Novel Semantics of the Top-k Queries on Uncertainly Fused Multi-Sensory data
收藏 引用
JOURNAL OF INFORMATION SCIENCE AND engineering 2015年 第1期31卷 179-205页
作者: Liu, Dexi Jiangxi Univ Finance & Econ Sch Informat Technol Jiangxi Key Lab Data & Knowledge Engn Nanchang 330013 Peoples R China
Multiple sensors and sensor fusion are commonly used to get more accurate information. The intuitive method to store multi-sensory data is using uncertain database because the sensors are not precise enough. Hence, li... 详细信息
来源: 评论
2-Tuple linguistic hybrid arithmetic aggregation operators and application to multi-attribute group decision making
收藏 引用
knowledge-BASED SYSTEMS 2013年 45卷 31-40页
作者: Wan, Shu-Ping Jiangxi Univ Finance & Econ Coll Informat Technol Nanchang 330013 Jiangxi Peoples R China Jiangxi Univ Finance & Econ Jiangxi Key Lab Data & Knowledge Engn Nanchang 330013 Jiangxi Peoples R China
The focus of this paper is on multi-attribute group decision making (MAGDM) problems in which the attribute values, attribute weights, and expert weights are all in the form of 2-tuple linguistic information, which ar... 详细信息
来源: 评论