咨询与建议

限定检索结果

文献类型

  • 420 篇 会议
  • 322 篇 期刊文献

馆藏范围

  • 742 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 524 篇 工学
    • 175 篇 软件工程
    • 173 篇 计算机科学与技术...
    • 156 篇 控制科学与工程
    • 113 篇 化学工程与技术
    • 86 篇 机械工程
    • 42 篇 仪器科学与技术
    • 41 篇 电气工程
    • 37 篇 动力工程及工程热...
    • 31 篇 电子科学与技术(可...
    • 28 篇 信息与通信工程
    • 26 篇 生物工程
    • 26 篇 公安技术
    • 21 篇 冶金工程
    • 20 篇 材料科学与工程(可...
    • 19 篇 生物医学工程(可授...
    • 13 篇 环境科学与工程(可...
    • 11 篇 力学(可授工学、理...
    • 11 篇 交通运输工程
  • 286 篇 理学
    • 153 篇 数学
    • 85 篇 系统科学
    • 72 篇 化学
    • 49 篇 统计学(可授理学、...
    • 46 篇 物理学
    • 22 篇 生物学
  • 106 篇 管理学
    • 94 篇 管理科学与工程(可...
    • 19 篇 工商管理
    • 12 篇 图书情报与档案管...
  • 25 篇 医学
    • 16 篇 临床医学
    • 13 篇 基础医学(可授医学...
  • 21 篇 经济学
    • 20 篇 应用经济学
  • 7 篇 法学
  • 2 篇 农学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 44 篇 optimization
  • 21 篇 multi-agent syst...
  • 20 篇 fault detection
  • 19 篇 networked contro...
  • 17 篇 process monitori...
  • 16 篇 switches
  • 16 篇 topology
  • 15 篇 stability analys...
  • 15 篇 synchronization
  • 13 篇 uncertainty
  • 13 篇 heuristic algori...
  • 12 篇 electroencephalo...
  • 12 篇 sliding mode con...
  • 12 篇 feature extracti...
  • 12 篇 mathematical mod...
  • 11 篇 delays
  • 11 篇 monitoring
  • 11 篇 robustness
  • 10 篇 brain computer i...
  • 10 篇 symmetric matric...

机构

  • 148 篇 key laboratory o...
  • 75 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 34 篇 key laboratory o...
  • 24 篇 school of inform...
  • 20 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 15 篇 department of co...
  • 14 篇 the key laborato...
  • 14 篇 key laboratory o...
  • 13 篇 school of electr...
  • 12 篇 institute of adv...
  • 10 篇 key laboratory o...
  • 10 篇 shanghai institu...
  • 10 篇 key laboratory o...
  • 9 篇 department of au...
  • 9 篇 jiangxi key labo...

作者

  • 59 篇 qian feng
  • 51 篇 feng qian
  • 35 篇 hongbo shi
  • 33 篇 yugang niu
  • 30 篇 huaicheng yan
  • 29 篇 xingyu wang
  • 25 篇 wenli du
  • 24 篇 hao zhang
  • 24 篇 du wenli
  • 20 篇 钱锋
  • 19 篇 wangli he
  • 19 篇 yang tang
  • 18 篇 jing jin
  • 17 篇 tang yang
  • 17 篇 yuanyuan zou
  • 17 篇 bei wang
  • 17 篇 wen yang
  • 16 篇 shi hongbo
  • 16 篇 tao liu
  • 15 篇 niu yugang

语言

  • 666 篇 英文
  • 73 篇 中文
  • 3 篇 其他
检索条件"机构=Jiangxi Key Laboratory of Advanced Control and Optimization"
742 条 记 录,以下是61-70 订阅
排序:
Differentially Private Opinion Dynamics of Influence Networks
收藏 引用
IEEE Transactions on control of Network Systems 2025年
作者: Wu, Guanglei Zhang, Wenbing Mao, Shuai Wu, Xiaotai Tang, Yang Yangzhou University School of Mathematical Sciences Jiangsu225002 China Nantong University Department of Electrical Engineering Nantong226019 China Anhui Polytechnic University Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment Ministry of Education Wuhu241000 China East China University of Science and Technology Key Laboratory of Advanced Control and Optimization for Chemical Processes Ministry of Education Shanghai200237 China
In this paper, a unified influence networks model incorporating differential privacy mechanisms (DPMs), called the differentially private opinion dynamics (DPODs) model is proposed. In this model, each individual uses... 详细信息
来源: 评论
A Memory-Greedy Policy With Guaranteed Convergence for Accelerating Reinforcement Learning
收藏 引用
Journal of Autonomous Vehicles and Systems 2021年 第1期1卷 011005页
作者: Yu, Xinglin Wu, Yuhu Sun, Xi-Ming Zhou, Wenya Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education School of Control Science and Engineering Dalian University of Technology Dalian116024 China Liaoning Provincial Key Laboratory of Aerospace Advanced Technology School of Aeronautics and Astronautics Dalian University of Technology Dalian116024 China
Balancing the exploration and exploitation in reinforcement learning is a commonly dilemma and time-wasting work. In this paper, a novel exploration policy used in Q-Learning, called Memory-greedy policy, is proposed ... 详细信息
来源: 评论
Obtaining frequency-time diagram from perturbation signal-time diagram  7
Obtaining frequency-time diagram from perturbation signal-ti...
收藏 引用
7th International Conference on Physics, Mathematics and Statistics, ICPMS 2024
作者: Liu, Xiaoyuan Zhang, Yuxin Dai, Runrui Lai, Zongqiang Qiu, Huibin Shen, Chengshuo Weng, Huang Wu, Shengfa Zheng, Wei Zhang, Wei Liang, Wenxiang Han, Qianhao Li, Xiaobin Liu, Lihuan Shi, Chunhui Xu, Ting Zhang, Haotian Fan, Jiayu Yu, Meiping Tao, Jiajun Jiangxi Province Key Laboratory of Fusion and Information Control Department of Physics Nanchang University Nanchang330031 China NCU-ASIPP Magnetic Confinement Fusion Joint Lab Institute of Fusion Energy and Plasma Application Nanchang University Nanchang330031 China International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan China
In the field of nuclear fusion energy development, magnetic confinement tokamak reactors, which use strong magnetic fields to confine high-temperature plasmas, are crucial for sustainable and clean fusion energy. Disr... 详细信息
来源: 评论
RBFNN-Based ADRC Design for Continuous-Time Systems with Unknown Nonlinear Dynamics Subject to Time-Varying Disturbance
RBFNN-Based ADRC Design for Continuous-Time Systems with Unk...
收藏 引用
Chinese control Conference (CCC)
作者: Shuai Yan Shoulin Hao Haichen Yu Tao Liu Bin Yan Yihui Gong Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education Dalian University of Technology Dalian China Institute of Advanced Control Technology Dalian University of Technology Dalian China
In this paper, a radial basis function neural network (RBFNN) based active disturbance rejection control (ADRC) scheme is proposed for continuous-time systems with unknown nonlinear dynamics and time-varying disturban...
来源: 评论
Semi-Supervised Multiview Fuzzy Broad Learning
SSRN
收藏 引用
SSRN 2023年
作者: Xi, Chao Peng, Cheng Fan, Zizhu Liu, Qiang Wang, Hui Key Laboratory of Advanced Control and Optimization of Jiangxi Province East China Jiaotong University Nanchang330013 China Department of Engineering King’s College London London4616 United Kingdom State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Liaoning110819 China
Semi-supervised learning models often rely on the restricted assumptions, and can easily suffer from corvariate shift or noise. Few studies have explored the use of fuzzy rule-based methods in the semi-supervised disc... 详细信息
来源: 评论
Cellulose nanocrystals intercalated clay biocomposite for rapid Cr(VI) removal
收藏 引用
Environmental Science and Pollution Research 2024年 第20期31卷 29719-29729页
作者: Deng, Zilong Wu, Zixuan Wu, Qin Yu, Junlei Zou, Chenglong Deng, Huali Jin, Pingliang Fang, Donglu State Key Laboratory for Pollution Control School of Environmental Science and Engineering Shanghai Institute of Pollution Control and Ecological Security Tongji University 1239 Siping Road Shanghai200092 China Co-Innovation Center for Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Jiangsu Nanjing210037 China School of Civil Engineering and Architecture East China Jiaotong University Nanchang330013 China Shanghai Dongfang Guochuang Advanced Textile Innovation Center Co. Ltd Shanghai Textile Science Research Institute Co. Ltd Shanghai200082 China Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification Jiangxi Nanchang330046 China
The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt... 详细信息
来源: 评论
Optimal design of extractive dividing-wall column using an efficient equation-oriented approach
收藏 引用
Frontiers of Chemical Science and Engineering 2021年 第1期15卷 72-89页
作者: Yingjie Ma Nan Zhang Jie Li Cuiwen Cao Centre for Process Integration Department of Chemical Engineering and Analytical ScienceSchool of EngineeringThe University of ManchesterManchester M139PLUK Key Laboratory of Advanced Control and Optimization for Chemical Processes(Ministry of Education) East China University of Science and TechnologyShanghai 200237China
The extractive dividing-wall column(EDWC)is one of the most efficient technologies for separation of azeotropic or close boiling-point mixtures,but its design is fairly *** this paper we extend the hybrid feasible pat... 详细信息
来源: 评论
Wavelet Function Based Spectral Model Calibration for Measuring Crystallization Solution via ATR-FTIR Spectroscopy  11
Wavelet Function Based Spectral Model Calibration for Measur...
收藏 引用
11th IEEE Data Driven control and Learning Systems Conference, DDCLS 2022
作者: Pei, Xiaojing Liu, Tao Liu, Jingxiang Hao, Shoulin Yang, Siwei Dalian University of Technology Ministry of Education Key Laboratory of Intelligent Control and Optimization for Industrial Equipment Dalian116024 China Institute of Advanced Control Technology Dalian University of Technology Dalian116024 China School of Marine Electrical Engineering Dalian Maritime University Dalian116026 China
For measuring the solution concentration of crystallization process by ATR-FTIR spectroscopy, this paper proposes an improved spectral model calibration method to guarantee in-situ measurement accuracy, based on wavel... 详细信息
来源: 评论
Optimizing Bounding Box Regression in Complex Backgrounds
Optimizing Bounding Box Regression in Complex Backgrounds
收藏 引用
2024 China Automation Congress, CAC 2024
作者: Chen, Jun Zhang, Haiyan Yu, Anjun Wang, Yiwei School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education Wuhan430074 China Jiangxi Ganyue Expressway Co.Ltd. Nanchang China School of Automation China University of Geosciences Wuhan430074 China
In the context of electrical power operation sites, the automated and accurate detection of whether workers are properly equipped with safety gear, such as safety clothing, helmets, and safety ropes for high-altitude ... 详细信息
来源: 评论
Using deep learning to denoise and detect gravitational waves
收藏 引用
Physical Review D 2024年 第6期110卷 063010页
作者: CunLiang Ma ShuoQiu Li Zhoujian Cao Mingzhen Jia School of Information Engineering Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou 341000 China Institute of Applied Mathematics School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced Study
We have upgraded the MSNRnet framework to MSNRnet-2 by refining the training strategy, drawing inspiration from generative adversarial networks for data generation. The astrophysical discrimination network enforces co... 详细信息
来源: 评论