咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 核科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物工程
  • 9 篇 理学
    • 4 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 2 篇 天文学
    • 1 篇 地球物理学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 3 篇 deep learning
  • 2 篇 semantic segment...
  • 2 篇 convolutional ne...
  • 1 篇 half-metal prope...
  • 1 篇 classical black ...
  • 1 篇 inertial navigat...
  • 1 篇 generative adver...
  • 1 篇 spin-filtering e...
  • 1 篇 transformers
  • 1 篇 gas sensor
  • 1 篇 dimensionality r...
  • 1 篇 gravitational wa...
  • 1 篇 van der waals fo...
  • 1 篇 gravitational wa...
  • 1 篇 weak supervision
  • 1 篇 location awarene...
  • 1 篇 decoding
  • 1 篇 fe-doped
  • 1 篇 general relativi...
  • 1 篇 consensus algori...

机构

  • 5 篇 jiangxi provinci...
  • 5 篇 school of inform...
  • 4 篇 jiangxi provinci...
  • 3 篇 school of fundam...
  • 3 篇 jiangxi province...
  • 2 篇 institute of app...
  • 1 篇 jinan university...
  • 1 篇 jiangxi province...
  • 1 篇 guangdong univer...
  • 1 篇 institute for fr...
  • 1 篇 school of fundam...
  • 1 篇 school of inform...
  • 1 篇 school of inform...
  • 1 篇 institute of app...
  • 1 篇 key laboratory f...
  • 1 篇 school of electr...
  • 1 篇 centre for infra...
  • 1 篇 jiangxi universi...
  • 1 篇 jiangxi universi...
  • 1 篇 jiangxi provinci...

作者

  • 4 篇 ma cunliang
  • 3 篇 mingzhen jia
  • 3 篇 cunliang ma
  • 3 篇 zhoujian cao
  • 2 篇 long keliu
  • 2 篇 xiao wanhai
  • 2 篇 luo huilan
  • 2 篇 huang kangni
  • 2 篇 chen tong
  • 2 篇 cai yiting
  • 1 篇 shuoqiu li
  • 1 篇 xionga songbo
  • 1 篇 min yuan
  • 1 篇 yang huogen
  • 1 篇 chen yishan
  • 1 篇 shark lik-kwan
  • 1 篇 gong cheng
  • 1 篇 weiguang zhou
  • 1 篇 zhang dong-lan
  • 1 篇 yang shuxin

语言

  • 11 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control"
19 条 记 录,以下是11-20 订阅
排序:
Frame-by-Frame Multi-object Tracking-Guided Video Captioning
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Luo, Huilan Cai, Xia Shark, Lik-Kwan Jiangxi University of Science and Technology Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou341000 China University of Central Lancashire School of Engineering and Computing PrestonPR1 2HE United Kingdom
Video captioning through deep learning presents a multifaceted challenge that encompasses the extraction of complex spatio-temporal visual features and the synthesis of meaningful natural language descriptions. Most o... 详细信息
来源: 评论
Excellent sensitivity and selectivity of g-C4N3 monolayer based gas senors for efficiently detecting nitrogen oxides: Spin-resolved quantum transport behaviors
收藏 引用
IEEE Sensors Journal 2025年
作者: Zhou, Wensheng Luo, Cheng Tang, Peng Xiao, Xianbo Xionga, Songbo Chen, Tong Jiangxi University of Science and Technology School of Energy and Mechanical Engineering Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control Nanchang 330013 China Jiangxi University of Chinese Medicine School of Computer Science Nanchang 330004 China
NO and NO2 are important gases that can lead to the formation of photochemical smog and acid rain. Therefore, it is important to develop high-performance nitrogen oxide sensors. Here, the electronic structure, spin tr... 详细信息
来源: 评论
Direct Z-scheme CdTe/g-C3N4 van der Waals heterojunction for enhanced solar-to-hydrogen efficiency and spontaneous photocatalytic water splitting
收藏 引用
Molecular Catalysis 2025年 582卷
作者: Li, Yi Qiu, Xin Gong, Cheng Chen, Tong Zhang, Dong-Lan Wang, Ling-Ling Dong, Kejun Xu, Liang Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Jiangxi Province Nanchang330013 China Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education School of Physics and Electronics Hunan University Changsha410082 China Centre for Infrastructure Engineering School of Engineering Design and Built Environment Western Sydney University PenrithNSW2751 Australia
The development of an efficient photocatalyst for water splitting to produce hydrogen represents a promising solution to the energy crisis and environmental pollution. Using first-principles calculations, a CdTe/g-C3N... 详细信息
来源: 评论
The Indoor Fusion Algorithm Based on INS and UWB  6th
The Indoor Fusion Algorithm Based on INS and UWB
收藏 引用
6th International Conference on Computer Science and Educational Informatization, CSEI 2024
作者: Meng, Yu Huang, Kangni Hui, Jin Long, Keliu Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control Jiangxi University of Science and Technology Ganzhou341000 China School of Information Engineering Jiangxi University of Science and Technology Ganzhou341000 China School of Information Engineering Hangzhou Dianzi University Hangzhou310018 China
Ultra-wideband (UWB) positioning is highly susceptible to environmental factors, whereas inertial navigation system (INS) positioning suffers from cumulative errors over time. To address these limitations, this paper ... 详细信息
来源: 评论
Multi-Class Token Attention Learning for Weakly Supervised Semantic Segmentation  23
Multi-Class Token Attention Learning for Weakly Supervised S...
收藏 引用
23rd International Conference on Machine Learning and Cybernetics, ICMLC 2024
作者: Zeng, Zhen Luo, Huilan School of Information Engineering Jiangxi University of Science and Technology Ganzhou341000 China Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou341000 China
Weakly supervised semantic segmentation (WSSS) using only image-level class labels is a challenging task. Due to the local receptive fields of convolutional neural networks (CNNs), CAMs applied to CNNs often suffer fr... 详细信息
来源: 评论
Gravitational wave search by time-scale-recursive denoising and matched filtering
收藏 引用
Science China(Physics,Mechanics & Astronomy) 2024年 第12期67卷 166-182页
作者: Cunliang Ma Chenyang Ma Zhoujian Cao Mingzhen Jia School of Information Engineering Jiangxi University of Science and TechnologyGanzhou341000China Institute for Frontiers in Astronomy and Astrophysics Beijing Normal UniversityBeijing102206China School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced StudyUCASHangzhou310024China Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou341000China
In our previous work [Physical Review D,2024,109(4):043009],we introduced MSNRnet,a framework integrating deep learning and matched filtering methods for gravitational wave(GW) *** with end-to-end classification metho... 详细信息
来源: 评论
Multi-Class Token Attention Learning for Weakly Supervised Semantic Segmentation
Multi-Class Token Attention Learning for Weakly Supervised S...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Zhen Zeng Huilan Luo School of Information Engineering Jiangxi University of Science and Technology Ganzhou China Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou China
Weakly supervised semantic segmentation (WSSS) using only image-level class labels is a challenging task. Due to the local receptive fields of convolutional neural networks (CNNs), CAMs applied to CNNs often suffer fr... 详细信息
来源: 评论
Using deep learning to denoise and detect gravitational waves
收藏 引用
Physical Review D 2024年 第6期110卷 063010页
作者: CunLiang Ma ShuoQiu Li Zhoujian Cao Mingzhen Jia School of Information Engineering Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou 341000 China Institute of Applied Mathematics School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced Study
We have upgraded the MSNRnet framework to MSNRnet-2 by refining the training strategy, drawing inspiration from generative adversarial networks for data generation. The astrophysical discrimination network enforces co... 详细信息
来源: 评论
Extraction of binary neutron star gravitational wave waveforms from Einstein Telescope using deep learning
arXiv
收藏 引用
arXiv 2024年
作者: Ma, CunLiang Yu, XinYao Cao, Zhoujian Jia, Mingzhen School of Information Engineering Jiangxi University of Science and Technology Ganzhou341000 China Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control Ganzhou341000 China Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced Study UCAS Hangzhou310024 China
In the future, the third generation (3G) gravitational wave (GW) detectors, exemplified by the Einstein Telescope (ET), will be operational. The detection rate of GW from binary neutron star (BNS) is expected to reach... 详细信息
来源: 评论