咨询与建议

限定检索结果

文献类型

  • 13 篇 会议
  • 12 篇 期刊文献

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 20 篇 计算机科学与技术...
    • 20 篇 软件工程
    • 4 篇 化学工程与技术
    • 2 篇 林业工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 生物工程
    • 1 篇 控制科学与工程
    • 1 篇 农业工程
  • 18 篇 理学
    • 17 篇 数学
    • 15 篇 统计学(可授理学、...
    • 5 篇 系统科学
    • 4 篇 化学
    • 2 篇 生物学
    • 1 篇 物理学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 8 篇 genetic programm...
  • 4 篇 machine learning
  • 2 篇 regression analy...
  • 2 篇 genetic algorith...
  • 2 篇 benchmarking
  • 1 篇 semiconductor de...
  • 1 篇 data warehouses
  • 1 篇 approximation al...
  • 1 篇 prototypes
  • 1 篇 power amplifiers
  • 1 篇 initial value pr...
  • 1 篇 optimization
  • 1 篇 digital storage
  • 1 篇 computational mo...
  • 1 篇 predictive model...
  • 1 篇 benchmark testin...
  • 1 篇 evolutionary alg...
  • 1 篇 differential equ...
  • 1 篇 jacobian matrice...
  • 1 篇 iterative algori...

机构

  • 10 篇 josef ressel cen...
  • 3 篇 heuristic and ev...
  • 2 篇 josef ressel cen...
  • 2 篇 johannes kepler ...
  • 2 篇 institute for fo...
  • 2 篇 josef ressel cen...
  • 2 篇 department of co...
  • 2 篇 josef ressel cen...
  • 1 篇 josef ressel cen...
  • 1 篇 2)josef ressel c...
  • 1 篇 josef ressel cen...
  • 1 篇 miba ag dr. mitt...
  • 1 篇 josef ressel cen...
  • 1 篇 josef ressel cen...
  • 1 篇 josef ressel cen...
  • 1 篇 heuristic and ev...
  • 1 篇 universidad comp...
  • 1 篇 universidad comp...
  • 1 篇 josef ressel cen...
  • 1 篇 josef ressel cen...

作者

  • 19 篇 kronberger gabri...
  • 10 篇 kammerer lukas
  • 8 篇 kommenda michael
  • 5 篇 bachinger floria...
  • 5 篇 burlacu bogdan
  • 3 篇 affenzeller mich...
  • 3 篇 gabriel kronberg...
  • 2 篇 winkler stephan ...
  • 2 篇 parra daniel
  • 2 篇 haider christian
  • 2 篇 joedicke david
  • 1 篇 michael kommenda
  • 1 篇 winkler stephan
  • 1 篇 evgeniya kablima...
  • 1 篇 ana helena kolod...
  • 1 篇 stimpfl martin
  • 1 篇 kronberge gabrie...
  • 1 篇 zenisek jan
  • 1 篇 martin steiger
  • 1 篇 hans-georg brach...

语言

  • 25 篇 英文
检索条件"机构=Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Lab"
25 条 记 录,以下是1-10 订阅
排序:
Operon C++: An efficient genetic programming framework for symbolic regression  20
Operon C++: An efficient genetic programming framework for s...
收藏 引用
2020 Genetic and evolutionary Computation Conference, GECCO 2020
作者: Burlacu, Bogdan Kronberger, Gabriel Kommenda, Michael Josef Ressel Centre for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory Hagenberg Austria
Genetic Programming (GP) is a dynamic field of research where empirical testing plays an important role in validating new ideas and algorithms. The ability to easily prototype new algorithms by reusing key components ... 详细信息
来源: 评论
Data Aggregation for Reducing Training Data in symbolic regression  17th
Data Aggregation for Reducing Training Data in Symbolic Regr...
收藏 引用
17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
作者: Kammerer, Lukas Kronberger, Gabriel Kommenda, Michael Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria
The growing volume of data makes the use of computationally intense machine learning techniques such as symbolic regression with genetic programming more and more impractical. This work discusses methods to reduce the... 详细信息
来源: 评论
Shape-Constrained symbolic regression with NSGA-III  18th
Shape-Constrained Symbolic Regression with NSGA-III
收藏 引用
18th International Conference on Computer Aided Systems Theory, EUROCAST 2022
作者: Haider, Christian Kronberger, Gabriel Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria
Shape-constrained symbolic regression (SCSR) allows to include prior knowledge into data-based modeling. This inclusion allows to ensure that certain expected behavior is reflected by the resulting models. This specif... 详细信息
来源: 评论
Concept for a Technical Infrastructure for Management of Predictive Models in Industrial Applications  17th
Concept for a Technical Infrastructure for Management of Pre...
收藏 引用
17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
作者: Bachinger, Florian Kronberger, Gabriel Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria
With the increasing number of created and deployed prediction models and the complexity of machine learning workflows we require so called model management systems to support data scientists in their tasks. In this wo... 详细信息
来源: 评论
Comparing Shape-Constrained regression algorithms for Data Validation  18th
Comparing Shape-Constrained Regression Algorithms for Data ...
收藏 引用
18th International Conference on Computer Aided Systems Theory, EUROCAST 2022
作者: Bachinger, Florian Kronberger, Gabriel Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria Johannes Kepler University Linz Austria
Industrial and scientific applications handle large volumes of data that render manual validation by humans infeasible. Therefore, we require automated data validation approaches that are able to consider the prior kn... 详细信息
来源: 评论
Identification of Dynamical Systems Using symbolic regression  17th
Identification of Dynamical Systems Using Symbolic Regressio...
收藏 引用
17th International Conference on Computer Aided Systems Theory, EUROCAST 2019
作者: Kronberger, Gabriel Kammerer, Lukas Kommenda, Michael Josef Ressel Centre for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Softwarepark 11 Hagenberg4232 Austria
We describe a method for the identification of models for dynamical systems from observational data. The method is based on the concept of symbolic regression and uses genetic programming to evolve a system of ordinar... 详细信息
来源: 评论
Empirical analysis of variance for genetic programming based symbolic regression  21
Empirical analysis of variance for genetic programming based...
收藏 引用
2021 Genetic and evolutionary Computation Conference, GECCO 2021
作者: Kammerer, Lukas Kronberger, Gabriel Winkler, Stephan Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Campus Hagenberg Johannes Kepler University Department of Computer Science Linz Austria
Genetic programming (GP) based symbolic regression is a stochastic, high-variance algorithm. Its sensitivity to changes in training data is a drawback for practical applications. In this work, we analyze empirically t... 详细信息
来源: 评论
symbolic regression with Fast Function Extraction and Nonlinear Least Squares Optimization  18th
Symbolic Regression with Fast Function Extraction and Nonl...
收藏 引用
18th International Conference on Computer Aided Systems Theory, EUROCAST 2022
作者: Kammerer, Lukas Kronberger, Gabriel Kommenda, Michael Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria Department of Computer Science Johannes Kepler University Linz Austria
Fast Function Extraction (FFX) is a deterministic algorithm for solving symbolic regression problems. We improve the accuracy of FFX by adding parameters to the arguments of nonlinear functions. Instead of only optimi... 详细信息
来源: 评论
Identifying Differential Equations for the Prediction of Blood Glucose using Sparse Identification of Nonlinear Systems  18th
Identifying Differential Equations for the Prediction of ...
收藏 引用
18th International Conference on Computer Aided Systems Theory, EUROCAST 2022
作者: Joedicke, David Parra, Daniel Kronberger, Gabriel Winkler, Stephan M. Josef Ressel Centre for Symbolic Regression Heuristic and Evolutionary Algorithms Laboratory University of Applied Sciences Upper Austria Hagenberg Austria Universidad Complutense de Madrid Madrid Spain
Describing dynamic medical systems using machine learning is a challenging topic with a wide range of applications. In this work, the possibility of modeling the blood glucose level of diabetic patients purely on the ... 详细信息
来源: 评论
Local Optimization Often is Ill-conditioned in Genetic Programming for symbolic regression
Local Optimization Often is Ill-conditioned in Genetic Progr...
收藏 引用
International Symposium on symbolic and Numeric algorithms for Scientific Computing (SYNASC)
作者: Gabriel Kronberger Josef Ressel Center for Symbolic Regression Heuristic and Evolutionary Algorithms Lab University of Applied Sciences Upper Austria
Gradient-based local optimization has been shown to improve results of genetic programming (GP) for symbolic regression. Several state-of-the-art GP implementations use iterative nonlinear least squares (NLS) algorith... 详细信息
来源: 评论