咨询与建议

限定检索结果

文献类型

  • 49 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 58 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 47 篇 计算机科学与技术...
    • 20 篇 电气工程
    • 15 篇 信息与通信工程
    • 12 篇 软件工程
    • 8 篇 控制科学与工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 生物工程
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
  • 1 篇 理学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 6 篇 openmp
  • 4 篇 cuda
  • 3 篇 parallel
  • 3 篇 gpu
  • 2 篇 collaborative fi...
  • 2 篇 gpu parallel
  • 2 篇 wsns
  • 2 篇 team formation
  • 2 篇 over-smoothing
  • 2 篇 knowledge graph
  • 2 篇 wireless sensor ...
  • 2 篇 universal combin...
  • 2 篇 wireless sensor ...
  • 2 篇 social network
  • 2 篇 recommendation s...
  • 2 篇 promoter
  • 2 篇 poi recommendati...
  • 1 篇 data gathering a...
  • 1 篇 data caching
  • 1 篇 totalcost

机构

  • 27 篇 heilongjiang uni...
  • 19 篇 key lab database...
  • 19 篇 heilongjiang uni...
  • 9 篇 key lab database...
  • 7 篇 heilongjiang uni...
  • 6 篇 heilongjiang uni...
  • 3 篇 heilongjiang uni...
  • 3 篇 heilongjiang uni...
  • 2 篇 univ south carol...
  • 2 篇 qilu univ techno...
  • 2 篇 qilu univ techno...
  • 2 篇 georgia state un...
  • 2 篇 univ chinese aca...
  • 2 篇 suny coll new pa...
  • 1 篇 univ s carolina ...
  • 1 篇 heilongjiang uni...
  • 1 篇 heilongjiang uni...
  • 1 篇 heilongjang univ...
  • 1 篇 harbin inst tech...
  • 1 篇 shandong univ sc...

作者

  • 19 篇 li jinbao
  • 11 篇 lu jun
  • 11 篇 wang nan
  • 11 篇 guo longjiang
  • 8 篇 yang yan
  • 8 篇 ren meirui
  • 5 篇 li jun
  • 5 篇 liu yong
  • 5 篇 ai chunyu
  • 5 篇 zhu jinghua
  • 4 篇 jing ruiqing
  • 3 篇 mo juan
  • 3 篇 zhang zhuo
  • 3 篇 guo yahong
  • 3 篇 zhang jijie
  • 3 篇 ren qianqian
  • 3 篇 zhong yingli
  • 3 篇 liu yu
  • 3 篇 li kun
  • 2 篇 xu xin

语言

  • 57 篇 英文
  • 1 篇 其他
检索条件"机构=Key Lab Database Parallel Comp"
58 条 记 录,以下是1-10 订阅
排序:
ShuffleVITNet: MOBILE-FRIENDLY VISION TRANSFORMER With LESS-MEMORY
ShuffleVITNet: MOBILE-FRIENDLY VISION TRANSFORMER With LESS-...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhao, Xinyu Lu, Jun Heilongjiang Univ Coll Comp Sci & Technol Harbin Peoples R China Key Lab Database & Parallel Comp Heilongjiang Pro Harbin Peoples R China
Traditional Convolutional Neural Networks (CNNs) can efficiently acquire local features, while ViT uses a Transformer structure that captures global contextual information. In this paper, a new high-performance lightw... 详细信息
来源: 评论
A Simplified Bert Filter Denoising Model for Sequence Recommendation  24
A Simplified Bert Filter Denoising Model for Sequence Recomm...
收藏 引用
International Conference on Machine Intelligence and Digital Applications (MIDA)
作者: Xie, Yunyang Wang, Nan Xu, Xin Zhong, Yingli Heilongjiang Univ Coll Comp Sci & Technol Harbin Peoples R China Heilongjiang Univ Key Lab Database & Parallel Comp Harbin Peoples R China
In recent years, some deep neural network models like Recurrent Neural Network (RNN), transformer and Bert have been applied to sequence recommendation. It aims to obtain dynamic preference features from recorded user... 详细信息
来源: 评论
Multi-behavior Recommender Model Based on LightGCN  20th
Multi-behavior Recommender Model Based on LightGCN
收藏 引用
20th International Conference on Intelligent computing (ICIC)
作者: Han Xueying Yang Yan Heilongjiang Univ Sch Comp Sci & Technol Harbin Peoples R China Heilongjiang Univ Heilongjiang Prov Key Lab Database & Parallel Com Harbin Peoples R China
Graph convolutional networks have gained traction in recommender systems recently, addressing issues likematrix sparsity. LightGCN simplifies models to avoid overfitting and improve generalization. However, it only co... 详细信息
来源: 评论
Time-aware Dual-kernel Hawkes Process for Sequential Recommendation  29th
Time-aware Dual-kernel Hawkes Process for Sequential Recomme...
收藏 引用
29th International Conference on database Systems for Advanced Applications (DASFAA)
作者: Liu, Jingyang Wang, Nan Zhong, Yingli Shen, Zhonghui Heilongjiang Univ Coll Comp Sci & Technol Harbin 150080 Peoples R China Heilongjiang Univ Key Lab Database & Parallel Comp Harbin 150080 Peoples R China Heilongjiang Univ Sci & Technol Dept Harbin Peoples R China
Sequence recommendation systems usually learn users personalized preferences based on historical behavior sequences of users. Previous methods often use rich item interaction informations combined with context to mine... 详细信息
来源: 评论
Knowledge-driven hierarchical intents modeling for recommendation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 259卷
作者: Zeng, Jin Wang, Nan Li, Jinbao Heilongjiang Univ Coll Comp Sci & Technol Harbin 150080 Peoples R China Heilongjiang Univ Key Lab Database & Parallel Comp Harbin 150080 Peoples R China Qilu Univ Technol Shandong Artificial Intelligence Inst Jinan 250353 Peoples R China Qilu Univ Technol Sch Math & Stat Jinan 250353 Peoples R China
Previous studies on user-item interaction graphs have typically concentrated on simple interactions, often overlooking the significant role of user intent in shaping these interactions. While some recent research has ... 详细信息
来源: 评论
MFIP: Multi-Factor Interlinked Point-of-Interest Recommendation in Location-Based Social Network
MFIP: Multi-Factor Interlinked Point-of-Interest Recommendat...
收藏 引用
IEEE International Performance, computing, and Communications Conference (IPCCC)
作者: Lu, Qiaojie Wang, Nan Li, Kun Heilongjiang Univ Sch Comp Sci & Technol Key Lab Database & Parallel Comp Heilongjiang Pro Harbin Heilongjiang Peoples R China
The paper proposes a multi-factor interlinked POI recommendation model called MFIP. Extracting user similarity for user-sensitive implicit modeling to enrich user representation. Using contextual information such as s... 详细信息
来源: 评论
IMBR: Interactive Multi-relation Bundle Recommendation with Graph Neural Network  17th
IMBR: Interactive Multi-relation Bundle Recommendation with ...
收藏 引用
17th International Conference on Wireless Algorithms, Systems, and Applications (WASA)
作者: Sun, Jiabao Wang, Nan Liu, Xinyu Heilongjiang Univ Sch Comp Sci & Technol Harbin Peoples R China Key Lab Database Parallel Comp Heilongjiang Prov Harbin Peoples R China
Traditional approaches focus on an individual item of most interest to users. However, in most realistic scenarios, the platform needs to recommend a group of items at one time for users' convenience, called bundl... 详细信息
来源: 评论
Knowledge Graph Bidirectional Interaction Graph Convolutional Network for Recommendation  31st
Knowledge Graph Bidirectional Interaction Graph Convolutiona...
收藏 引用
31st International Conference on Artificial Neural Networks (ICANN)
作者: Guo, Zengqiang Yang, Yan Zhang, Jijie Zhou, Tianqi Song, Bangyu Heilongjiang Univ Sch Comp Sci & Technol Harbin Peoples R China Key Lab Database & Parallel Comp Heilongjiang Pro Harbin Peoples R China
Recently, the recommended method based on the Knowledge Graph (KG) has become a hot research topic in modern recommendation systems. Most researchers use assistive information such as entity attributes in KG to improv... 详细信息
来源: 评论
Adaptive Graph Convolutional Networks based on Decouple and Residuals to relieve Over-Smoothing
Adaptive Graph Convolutional Networks based on Decouple and ...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary computation (IEEE CEC)
作者: Yin, Shaowei Yang, Yan Zhang, Jijie Zhou, Tianqi Heilongjiang Univ Sch Comp Sci & Technol Harbin Peoples R China Heilongjiang Univ Key Lab Database & Parallel Comp Heilongjiang Pro Harbin Peoples R China
For the node classification problem, the traditional graph convolutional network (GCN) and many of its variants achieve the best results at shallow layers, especially for sparse graphs, which do not take full advantag... 详细信息
来源: 评论
EAS-GCN: Enhanced Attribute-Aware and Structure-Constrained Graph Convolutional Network  6th
EAS-GCN: Enhanced Attribute-Aware and Structure-Constrained ...
收藏 引用
6th Asia Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data (APWeb-WAIM)
作者: Zhang, Jijie Yang, Yan Yin, Shaowei Wang, Zhengqi Heilongjiang Univ Sch Comp Sci & Technol Harbin 150080 Peoples R China Key Lab Database & Parallel Comp Heilongjiang Pro Harbin 150080 Peoples R China Harbin Engn Univ Sch Comp Sci & Technol Harbin 150001 Peoples R China
Recently, graph neural networks (GNNs) have achieved significant success in many graph-based tasks. However, most GNNs are inherently restricted by over-smoothing, which limits performance improvement. In this paper, ... 详细信息
来源: 评论