咨询与建议

限定检索结果

文献类型

  • 706 篇 期刊文献
  • 340 篇 会议

馆藏范围

  • 1,046 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 765 篇 工学
    • 649 篇 计算机科学与技术...
    • 179 篇 电气工程
    • 131 篇 软件工程
    • 65 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 22 篇 环境科学与工程(可...
    • 20 篇 机械工程
    • 20 篇 生物工程
    • 16 篇 动力工程及工程热...
    • 14 篇 交通运输工程
    • 9 篇 仪器科学与技术
    • 9 篇 石油与天然气工程
    • 8 篇 土木工程
  • 198 篇 管理学
    • 147 篇 管理科学与工程(可...
    • 57 篇 工商管理
    • 36 篇 图书情报与档案管...
    • 7 篇 公共管理
  • 187 篇 理学
    • 112 篇 数学
    • 47 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 23 篇 物理学
    • 10 篇 系统科学
    • 6 篇 化学
  • 76 篇 经济学
    • 53 篇 应用经济学
    • 25 篇 理论经济学
  • 60 篇 医学
    • 47 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 10 篇 公共卫生与预防医...
  • 11 篇 法学
    • 8 篇 社会学
  • 11 篇 农学
  • 9 篇 教育学
    • 9 篇 教育学
  • 2 篇 文学

主题

  • 48 篇 deep learning
  • 40 篇 support vector m...
  • 39 篇 machine learning
  • 32 篇 feature extracti...
  • 29 篇 training
  • 23 篇 classification
  • 22 篇 task analysis
  • 20 篇 support vector m...
  • 19 篇 multi-view learn...
  • 19 篇 semantics
  • 18 篇 optimization
  • 18 篇 data mining
  • 17 篇 kernel
  • 16 篇 object detection
  • 16 篇 correlation
  • 16 篇 data models
  • 15 篇 computational mo...
  • 14 篇 feature selectio...
  • 13 篇 covid-19
  • 13 篇 graph neural net...

机构

  • 445 篇 chinese acad sci...
  • 255 篇 univ chinese aca...
  • 229 篇 chinese acad sci...
  • 155 篇 key laboratory o...
  • 132 篇 school of econom...
  • 104 篇 univ chinese aca...
  • 82 篇 research center ...
  • 79 篇 univ chinese aca...
  • 55 篇 univ chinese aca...
  • 53 篇 chinese acad sci...
  • 46 篇 univ nebraska co...
  • 37 篇 univ chinese aca...
  • 35 篇 school of comput...
  • 35 篇 univ chinese aca...
  • 35 篇 peng cheng lab p...
  • 34 篇 univ chinese aca...
  • 30 篇 school of mathem...
  • 30 篇 research center ...
  • 26 篇 beijing key lab ...
  • 24 篇 renmin univ chin...

作者

  • 186 篇 shi yong
  • 147 篇 huang qingming
  • 146 篇 tian yingjie
  • 73 篇 xu qianqian
  • 53 篇 yang zhiyong
  • 51 篇 qi zhiquan
  • 46 篇 cao xiaochun
  • 45 篇 yong shi
  • 44 篇 li guorong
  • 42 篇 guo kun
  • 42 篇 niu lingfeng
  • 39 篇 liu ying
  • 34 篇 long wen
  • 33 篇 tang jingjing
  • 32 篇 wen ji-rong
  • 30 篇 zhang sanguo
  • 29 篇 fu saiji
  • 29 篇 dou zhicheng
  • 24 篇 tian xin
  • 24 篇 wu xindong

语言

  • 1,010 篇 英文
  • 31 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Key Lab of Big Data Mining and Knowledge Management"
1046 条 记 录,以下是301-310 订阅
排序:
Research on the co-occurrence feature mining of the Qing Dynasty embroidery patterns based on temporal multilayer networks
NPJ HERITAGE SCIENCE
收藏 引用
NPJ HERITAGE SCIENCE 2025年 第1期13卷
作者: Zhang, Yu Zhao, Haiying Qi, Lin Zhang, Jian Zhang, Tian Beijing Univ Posts & Telecommun State Key Lab Informat Photon & Opt Commun Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing 100876 Peoples R China Beijing Informat Sci & Technol Univ Sch Management Sci & Engn Beijing 102206 Peoples R China Beijing Key Lab Green Dev Decis Based Big Data Beijing 100192 Peoples R China Res Ctr Knowledge Management Beijing 100192 Peoples R China
Embroidery is an important cultural heritage that traces the origins of Chinese civilization over five thousand years. Embroidery patterns function as cultural genes characterized by relative stability, inheritance, a...
来源: 评论
Recent advances on loss functions in deep learning for computer vision
收藏 引用
NEUROCOMPUTING 2022年 497卷 129-158页
作者: Tian, Yingjie Su, Duo Lauria, Stanislao Liu, Xiaohui Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 100049 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Brunel Univ London Dept Comp Sci London UB8 3PH England Univ Chinese Acad Sci Sch Econ & Management 80 Zhongguancun East Rd Beijing 100190 Peoples R China
The loss function, also known as cost function, is used for training a neural network or other machine learning models. Over the past decade, researchers have designed many loss functions for machine learning, such as... 详细信息
来源: 评论
Unsupervised anomaly segmentation via deep feature reconstruction
收藏 引用
NEUROCOMPUTING 2021年 424卷 9-22页
作者: Shi, Yong Yang, Jie Qi, Zhiquan Univ Chinese Acad Sci Sch Econ & Management Beijing 101408 Peoples R China Univ Chinese Acad Sci Sch Comp & Technol Beijing 101408 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Univ Nebraska Coll Informat Sci & Technol Omaha NE 68182 USA
Automatic detecting anomalous regions in images of objects or textures without priors of the anomalies is challenging, especially when the anomalies appear in very small areas of the images, making difficult to-detect... 详细信息
来源: 评论
Supplier's goal setting considering sustainability: An uncertain dynamic data Envelopment Analysis based benchmarking model
收藏 引用
INFORMATION SCIENCES 2021年 545卷 44-64页
作者: Zhou, Xiaoyang Li, Linzi Wen, Haoyu Tian, Xin Wang, Shouyang Lev, Benjamin Xidian Univ Sch Econ & Management Xian 710126 Peoples R China Chinese Acad Sci Acad Math & Syst Sci Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Drexel Univ LeBow Coll Business Philadelphia PA 19104 USA
Because of the growing awareness of balancing the economy, the society and the environment, there has been an increased focus on goal setting under sustainable context. However, underperforming suppliers may set impra... 详细信息
来源: 评论
Optimizing Two-Way Partial AUC With an End-to-End Framework
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第8期45卷 10228-10246页
作者: Yang, Zhiyong Xu, Qianqian Bao, Shilong He, Yuan Cao, Xiaochun Huang, Qingming Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 100049 Peoples R China Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China Chinese Acad Sci Inst Informat Engn State Key Lab Informat Secur SKLOIS Beijing 100093 Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing 100049 Peoples R China Alibaba Grp Secur Dept Hangzhou 311121 Zhejiang Peoples R China Sun Yat Sen Univ Sch Cyber Sci & Technol Shenzhen 518107 Guangdong Peoples R China Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 101408 Peoples R China Univ Chinese Acad Sci Key Lab Big Data Min & Knowledge Management BDKM Beijing 101408 Peoples R China Peng Cheng Lab Shenzhen 518055 Guangdong Peoples R China
The Area Under the ROC Curve (AUC) is a crucial metric for machine learning, which evaluates the average performance over all possible True Positive Rates (TPRs) and False Positive Rates (FPRs). Based on the knowledge... 详细信息
来源: 评论
A Construction of Robust Representations for Small data Sets Using Broad Learning System
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2021年 第10期51卷 6074-6084页
作者: Tang, Huimin Dong, Peiwu Shi, Yong Beijing Inst Technol Sch Management & Econ Beijing 100081 Peoples R China Univ Nebraska Coll Informat Sci & Technol Omaha NE 68182 USA Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Southwest Minzu Univ Coll Elect & Informat Engn Chengdu 610041 Peoples R China
Feature processing is an important step for modeling and can improve the accuracy of machine learning models. Feature extraction methods can effectively extract features from high-dimensional data sets and enhance the... 详细信息
来源: 评论
Sparse and semi-attention guided faults diagnosis approach for distributed online services
收藏 引用
APPLIED SOFT COMPUTING 2023年 148卷
作者: Zhang, Linzi Shi, Yong Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Univ Birmingham Sch Comp Sci Birmingham B15 2TT England Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100049 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China
Despite the rapid advance of unsupervised reconstruction models in online service fault diagnosis, existing methods still lead to frequent false positive or false negative alarms. Tracing to the cause, popular reconst... 详细信息
来源: 评论
The neural network methods for solving Traveling Salesman Problem  8
The neural network methods for solving Traveling Salesman Pr...
收藏 引用
8th International Conference on Information Technology and Quantitative management (ITQM) - Developing Global Digital Economy after COVID-19
作者: Shi, Yong Zhang, Yuanying Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Univ Nebraska Omaha Coll Informat Sci & Technol Omaha NE 68182 USA Univ Chinese Acad Sci Sch Math Sci Beijing 100190 Peoples R China
Traveling Salesman Problem(TSP) is a main attention issue at present. Neural network can be used to solve combinatorial optimization problems. In recent years, there have existed many neural network methods for solvin... 详细信息
来源: 评论
Sparse optimization guided pruning for neural networks
收藏 引用
NEUROCOMPUTING 2024年 574卷
作者: Shi, Yong Tang, Anda Niu, Lingfeng Zhou, Ruizhi Univ Chinese Acad Sci Sch Math Sci Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Beijing Univ Technol Inst Operat Res & Informat Engn Beijing 100124 Peoples R China
Neural network pruning is a critical field aimed at reducing the infrastructure costs of neural networks by removing parameters. Traditional methods follow a fixed paradigm including pretraining, pruning, and fine-tun... 详细信息
来源: 评论
The Development of Green Olympic Games: A Comparison of CO2Emission Reduction Strategies between PyeongChang 2018 and Beijing 2022  9th
The Development of Green Olympic Games: A Comparison of CO2E...
收藏 引用
9th International Conference on Information Technology and Quantitative management, ITQM 2022
作者: Ding, Xuesong Jiang, Yilin Yang, Banban Su, Jingchun Chen, Liming Li, Na School of Economics and Management University of Chinese Academy of Sciences Beijing100190 China Chinese Academy of Fiscal Sciences Ministry of Finance Beijing100142 China Division of Sports Science and Physical Education Tsinghua University Beijing100084 China Division of Sports Science and Physical Education Tangshan Polytechnic College Tangshan063299 China Research Center on Fictitious Economy and Data Science Chinese Academy of Sciences Beijing100190 China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy Sciences Beijing100190 China
The Olympic Games are striking a balance between economic and ecological benefits. Taking the 5 ice event venues of the 2018 PyeongChang Winter Olympic Games as the research object, the CO2 emissions under the 2018 Py... 详细信息
来源: 评论