咨询与建议

限定检索结果

文献类型

  • 706 篇 期刊文献
  • 340 篇 会议

馆藏范围

  • 1,046 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 765 篇 工学
    • 649 篇 计算机科学与技术...
    • 179 篇 电气工程
    • 131 篇 软件工程
    • 65 篇 信息与通信工程
    • 48 篇 控制科学与工程
    • 22 篇 环境科学与工程(可...
    • 20 篇 机械工程
    • 20 篇 生物工程
    • 16 篇 动力工程及工程热...
    • 14 篇 交通运输工程
    • 9 篇 仪器科学与技术
    • 9 篇 石油与天然气工程
    • 8 篇 土木工程
  • 198 篇 管理学
    • 147 篇 管理科学与工程(可...
    • 57 篇 工商管理
    • 36 篇 图书情报与档案管...
    • 7 篇 公共管理
  • 187 篇 理学
    • 112 篇 数学
    • 47 篇 统计学(可授理学、...
    • 37 篇 生物学
    • 23 篇 物理学
    • 10 篇 系统科学
    • 6 篇 化学
  • 76 篇 经济学
    • 53 篇 应用经济学
    • 25 篇 理论经济学
  • 60 篇 医学
    • 47 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 10 篇 公共卫生与预防医...
  • 11 篇 法学
    • 8 篇 社会学
  • 11 篇 农学
  • 9 篇 教育学
    • 9 篇 教育学
  • 2 篇 文学

主题

  • 48 篇 deep learning
  • 40 篇 support vector m...
  • 39 篇 machine learning
  • 32 篇 feature extracti...
  • 29 篇 training
  • 23 篇 classification
  • 22 篇 task analysis
  • 20 篇 support vector m...
  • 19 篇 multi-view learn...
  • 19 篇 semantics
  • 18 篇 optimization
  • 18 篇 data mining
  • 17 篇 kernel
  • 16 篇 object detection
  • 16 篇 correlation
  • 16 篇 data models
  • 15 篇 computational mo...
  • 14 篇 feature selectio...
  • 13 篇 covid-19
  • 13 篇 graph neural net...

机构

  • 445 篇 chinese acad sci...
  • 255 篇 univ chinese aca...
  • 229 篇 chinese acad sci...
  • 155 篇 key laboratory o...
  • 132 篇 school of econom...
  • 104 篇 univ chinese aca...
  • 82 篇 research center ...
  • 79 篇 univ chinese aca...
  • 55 篇 univ chinese aca...
  • 53 篇 chinese acad sci...
  • 46 篇 univ nebraska co...
  • 37 篇 univ chinese aca...
  • 35 篇 school of comput...
  • 35 篇 univ chinese aca...
  • 35 篇 peng cheng lab p...
  • 34 篇 univ chinese aca...
  • 30 篇 school of mathem...
  • 30 篇 research center ...
  • 26 篇 beijing key lab ...
  • 24 篇 renmin univ chin...

作者

  • 186 篇 shi yong
  • 147 篇 huang qingming
  • 146 篇 tian yingjie
  • 73 篇 xu qianqian
  • 53 篇 yang zhiyong
  • 51 篇 qi zhiquan
  • 46 篇 cao xiaochun
  • 45 篇 yong shi
  • 44 篇 li guorong
  • 42 篇 guo kun
  • 42 篇 niu lingfeng
  • 39 篇 liu ying
  • 34 篇 long wen
  • 33 篇 tang jingjing
  • 32 篇 wen ji-rong
  • 30 篇 zhang sanguo
  • 29 篇 fu saiji
  • 29 篇 dou zhicheng
  • 24 篇 tian xin
  • 24 篇 wu xindong

语言

  • 1,010 篇 英文
  • 31 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"机构=Key Lab of Big Data Mining and Knowledge Management"
1046 条 记 录,以下是81-90 订阅
排序:
Information content and sentiment: the role of environmental disclosure in stock price crash risk
收藏 引用
INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS 2025年 104卷
作者: Long, Wen Ma, Ruiqi Guo, Man Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Univ Chinese Acad Sci Sino Danish Coll Beijing 100190 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China
Environmental disclosure is a topic of global importance. When negative environmental news emerges and is eventually revealed, it can influence investor decisions and lead to significant stock price movements, potenti... 详细信息
来源: 评论
NetNDP: Nonoverlapping (delta, gamma)-approximate pattern matching
收藏 引用
INTELLIGENT data ANALYSIS 2022年 第6期26卷 1661-1682页
作者: Wu, Youxi Jian, Bojing Li, Yan Jiang, He Wu, Xindong Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China Hebei Key Lab Big Data Comp Tianjin Peoples R China Hebei Univ Technol Sch Econ & Management Tianjin Peoples R China Dalian Univ Technol Sch Software Dalian Liaoning Peoples R China Hefei Univ Technol Key Lab Knowledge Engn Big Data Minist Educ Hefei Anhui Peoples R China
Pattern matching can be used to calculate the support of patterns, and is a key issue in sequential pattern mining (or sequence pattern mining). Nonoverlapping pattern matching means that two occurrences cannot use th... 详细信息
来源: 评论
A Brief Survey of Distribution Robust Graph Neural Networks  11
A Brief Survey of Distribution Robust Graph Neural Networks
收藏 引用
11th International Conference on Information Technology and Quantitative management, ITQM 2024
作者: Zheng, Lei Quan, Pei Shi, Yong Niu, Lingfeng The School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100190 China The College of Economics and Management Beijing University of Technology Beijing100124 China The School of Economics and Management University of Chinese Academy of Sciences Beijing1001090 China Research Center on Fictitious Economy and Data Science Chinese Academy of Sciences Beijing100190 China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing100190 China
Graph neural network is a powerful tool for solving various graph tasks, such as node classification and graph classification. However, there is increasing evidence suggesting that it is sensitive to distribution shif... 详细信息
来源: 评论
COMPREHENSIVE ANALYSIS OF OVER-SMOOTHING IN GRAPH NEURAL NETWORKS FROM MARKOV CHAINS PERSPECTIVE
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Weichen Wang, Chenguang Han, Congying Guo, Tiande Key Laboratory of Big Data Mining and Knowledge Management CAS Beijing China
The over-smoothing problem is an obstacle of developing deep graph neural network (GNN). Although many approaches to improve the over-smoothing problem have been proposed, there is still a lack of comprehensive unders... 详细信息
来源: 评论
Partial label learning: Taxonomy, analysis and outlook
收藏 引用
NEURAL NETWORKS 2023年 第1期161卷 708-734页
作者: Tian, Yingjie Yu, Xiaotong Fu, Saiji Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Math Sci Beijing 100049 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Beijing Univ Posts & Telecommun Sch Econ & Management Beijing 100876 Peoples R China
Partial label learning (PLL) is an emerging framework in weakly supervised machine learning with broad application prospects. It handles the case in which each training example corresponds to a candidate label set and... 详细信息
来源: 评论
OPR-Miner: Order-Preserving Rule mining for Time Series
收藏 引用
IEEE TRANSACTIONS ON knowledge AND data ENGINEERING 2023年 第11期35卷 11722-11735页
作者: Wu, Youxi Zhao, Xiaoqian Li, Yan Guo, Lei Zhu, Xingquan Fournier-Viger, Philippe Wu, Xindong Hebei Univ Technol Sch Artif Intelligence Tianjin 300401 Peoples R China Hebei Prov Key Lab Big Data Calculat Tianjin 300401 Peoples R China Hebei Univ Technol Sch Econ & Management Tianjin 300401 Peoples R China Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300401 Peoples R China Florida Atlantic Univ Dept Comp & Elect Engn & Comp Sci Boca Raton FL 33431 USA Shenzhen Univ Shenzhen 518060 Guangdong Peoples R China Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei 230009 Peoples R China
Discovering frequent trends in time series is a critical task in data mining. Recently, order-preserving matching was proposed to find all occurrences of a pattern in a time series, where the pattern is a relative ord... 详细信息
来源: 评论
Learning Hierarchical Modular Networks for Video Captioning
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第2期46卷 1049-1064页
作者: Li, Guorong Ye, Hanhua Qi, Yuankai Wang, Shuhui Qing, Laiyun Huang, Qingming Yang, Ming-Hsuan Univ Chinese Acad Sci Sch Comp Sci & Technol Key Lab Big Data Min & Knowledge Management Beijing 100049 Peoples R China Univ Adelaide Australian Inst Machine Learning Adelaide SA 5005 Australia Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100045 Peoples R China Univ Calif Merced Merced CA 95343 USA Yonsei Univ Seoul 03722 South Korea Google Mountain View CA 94043 USA
Video captioning aims to generate natural language descriptions for a given video clip. Existing methods mainly focus on end-to-end representation learning via word-by-word comparison between predicted captions and gr... 详细信息
来源: 评论
Generating Clarifying Questions with Web Search Results  22
Generating Clarifying Questions with Web Search Results
收藏 引用
45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
作者: Zhao, Ziliang Dou, Zhicheng Mao, Jiaxin Wen, Ji-Rong Renmin Univ China Gaoling Sch Artificial Intelligence Beijing Peoples R China Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China MOE Key Lab Data Engn & Knowledge Engn Beijing Peoples R China
Asking clarifying questions is an interactive way to effectively clarify user intent. When a user submits a query, the search engine will return a clarifying question with several clickable items of sub-intents for cl... 详细信息
来源: 评论
Improving Session Search by Modeling Multi-Granularity Historical Query Change  22
Improving Session Search by Modeling Multi-Granularity Histo...
收藏 引用
15th ACM International Conference on Web Search and data mining (WSDM)
作者: Zuo, Xiaochen Dou, Zhicheng Wen, Ji-Rong Renmin Univ China Gaoling Sch Artificial Intelligence Beijing Peoples R China Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China Key Lab Data Engn & Knowledge Engn MOE Beijing Peoples R China
In session search, it's important to utilize historical interactions between users and the search engines to improve document retrieval. However, not all historical information contributes to document ranking. Use... 详细信息
来源: 评论
Movie Recommendation Algorithm Based on Sentiment Analysis and LDA  8
Movie Recommendation Algorithm Based on Sentiment Analysis a...
收藏 引用
8th International Conference on Information Technology and Quantitative management (ITQM) - Developing Global Digital Economy after COVID-19
作者: Zhang, Yilin Zhang, Lingling Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China
Traditional recommendation algorithms have problems such as data sparseness and not paying attention to the diversity of recommendation results. In this paper, we use LDA to extract topics of comments about movies, an... 详细信息
来源: 评论