咨询与建议

限定检索结果

文献类型

  • 399 篇 会议
  • 227 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 627 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 397 篇 工学
    • 303 篇 计算机科学与技术...
    • 262 篇 软件工程
    • 76 篇 信息与通信工程
    • 36 篇 控制科学与工程
    • 34 篇 机械工程
    • 34 篇 生物工程
    • 29 篇 化学工程与技术
    • 28 篇 电子科学与技术(可...
    • 27 篇 光学工程
    • 25 篇 电气工程
    • 19 篇 生物医学工程(可授...
    • 15 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 农业工程
    • 9 篇 动力工程及工程热...
    • 9 篇 安全科学与工程
    • 8 篇 网络空间安全
  • 204 篇 理学
    • 123 篇 数学
    • 54 篇 物理学
    • 48 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 21 篇 化学
    • 10 篇 系统科学
  • 136 篇 管理学
    • 98 篇 图书情报与档案管...
    • 41 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 15 篇 农学
    • 12 篇 作物学
  • 14 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 12 篇 法学
    • 11 篇 社会学
  • 7 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 40 篇 semantics
  • 27 篇 training
  • 21 篇 feature extracti...
  • 16 篇 deep learning
  • 14 篇 data mining
  • 14 篇 computational mo...
  • 14 篇 data models
  • 13 篇 visualization
  • 13 篇 computer vision
  • 12 篇 face recognition
  • 11 篇 neural networks
  • 10 篇 robustness
  • 9 篇 object detection
  • 9 篇 forecasting
  • 8 篇 mapreduce
  • 7 篇 convolution
  • 7 篇 optimization
  • 7 篇 predictive model...
  • 7 篇 navigation
  • 7 篇 humans

机构

  • 103 篇 university of ch...
  • 65 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 23 篇 school of comput...
  • 20 篇 key laboratory o...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 18 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 15 篇 key lab. of inte...
  • 14 篇 shanghai key lab...
  • 14 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...
  • 12 篇 school of cyber ...
  • 11 篇 institute of com...
  • 10 篇 graduate univers...
  • 10 篇 microsoft cloud ...
  • 9 篇 microsoft resear...

作者

  • 32 篇 huang qingming
  • 28 篇 zhuge hai
  • 24 篇 xilin chen
  • 21 篇 cao juan
  • 19 篇 jiang yu-gang
  • 19 篇 gao wen
  • 18 篇 liu qun
  • 17 篇 shiguang shan
  • 17 篇 xu qianqian
  • 15 篇 wu zuxuan
  • 14 篇 qingming huang
  • 14 篇 qing he
  • 14 篇 cao xiaochun
  • 13 篇 yang zhiyong
  • 13 篇 sun xiaoping
  • 12 篇 shuqiang jiang
  • 12 篇 sheng qiang
  • 11 篇 hai zhuge
  • 11 篇 li hua
  • 11 篇 he qing

语言

  • 610 篇 英文
  • 12 篇 中文
  • 9 篇 其他
检索条件"机构=Key Lab of Cloud Computing and Intelligent Information Processing"
627 条 记 录,以下是371-380 订阅
排序:
Robust low-rank tensor factorization by cyclic weighted median
收藏 引用
Science China(information Sciences) 2015年 第5期58卷 145-155页
作者: MENG DeYu ZHANG Biao XU ZongBen ZHANG Lei GAO ChenQiang Institute for Information and System Sciences and Ministry of Education Key Lab for Intelligent Networks and Network Security Xi'an Jiaotong University Department of Computing Hong Kong Polytechnic University Chongqing Key Laboratory of Signal and Information Processing Chongqing University of Posts and Telecommunications
Low-rank tensor factorization(LRTF) provides a useful mathematical tool to reveal and analyze multi-factor structures underlying data in a wide range of practical applications. One challenging issue in LRTF is how to ... 详细信息
来源: 评论
Classification Based on Multilayer Extreme Learning Machine for Motor Imagery Task from EEG Signals
收藏 引用
Procedia Computer Science 2016年 88卷 176-184页
作者: Lijuan Duan Menghu Bao Jun Miao Yanhui Xu Juncheng Chen College of Computer Science and Technology Beijing University of Technology Beijing 100124 China Beijing Key Laboratory of Trusted Computing National Engineering Laboratory for Critical Technologies of Information Security Classified Protection Beijing 100124 China Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing 100190 China Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data Beijing 100124 China
Classification of motor imagery electroencephalogram (EEG) is one of the most important technologies for BCI. To improve the accuracy, this paper introduces a classification system based on Multilayer Extreme Learning... 详细信息
来源: 评论
Color Image Segmentation Based on Modified Kuramoto Model
收藏 引用
Procedia Computer Science 2016年 88卷 245-258页
作者: Xiaojie Liu Yuanhua Qiao Xianghui Chen Jun Miao Lijuan Duan College of Applied Sciences Beijing University of Technology Beijing 100124 China Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing 100190 China College of Computer Science and Technology Beijing University of Technology Beijing 100124 China
A new approach for color image segmentation is proposed based on Kuramoto model in this paper. Firstly, the classic Kuramoto model which describes a global coupled oscillator network is changed to be one that is local... 详细信息
来源: 评论
Video saliency prediction with optimized optical flow and gravity center bias
Video saliency prediction with optimized optical flow and gr...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zhe Wu Li Su Qingming Huang Bo Wu Jian Li Guorong Li Key Lab on Big Data Mining and Knowledge Management University of Chinese Academy of Sciences Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology Beijing China Capital Medical University Beijing China Beijing University of Posts and Telecommunications China Beijing
Dynamic videos are viewed fundamentally different from static images. Besides spatial features, motion feature also plays an important role as a temporal factor. Most existing video saliency models usually employ opti... 详细信息
来源: 评论
An improved reference point sampling method on Pareto optimal front
An improved reference point sampling method on Pareto optima...
收藏 引用
Congress on Evolutionary Computation
作者: Cheng He Linqiang Pan Hang Xu Ye Tian Xingyi Zhang Laboratory of Image Information Processing and Intelligent Control Huazhong University of Science and Technology Wuhan Hubei China Huazhong University of Science and Technology Wuhan Hubei CN Department of Computer Science Xiamen University Xiamen Fujian China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Anhui University Hefei Anhui China
In this paper, we propose a sampling approach of reference points used for performance metrics of multi-objective evolutionary algorithms. Traditional reference point sampling methods, such as the Das and Dennis metho... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Energy-efficient VM placement algorithms for cloud data center  2nd
Energy-efficient VM placement algorithms for cloud data cent...
收藏 引用
2nd International Conference on cloud computing and Big Data, cloudCom-Asia 2015
作者: Lin, Xiuyan Liu, Zhanghui Guo, Wenzhong Fujian Provincial Key Lab of the Network Computing and Intelligent Information Processing College of Mathematics and Computer Science Fuzhou University Fuzhou350116 China
cloud is the computing paradigm which provides computing resource as a service through network. The client can use computing resource in a convenient and on-demand way, just like the water and the electricity we use d... 详细信息
来源: 评论
Bayesian localization microscopy based on intensity distribution of fluorophores
收藏 引用
Protein & Cell 2015年 第3期6卷 211-220页
作者: Fan Xu Mingshu Zhang Zhiyong Liu Pingyong Xu Fa Zhang Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China University of Chinese Academy of Sciences Beijing 100049 China Laboratory of Non Coding RNA Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
Super-resolution microscopy techniques have overcome the limit of optical diffraction. Recently, the Bayesian analysis of Bleaching and Blinking data (3B) method has emerged as an important tool to obtain super-reso... 详细信息
来源: 评论
Memory bandwidth optimization of SpMV on GPGPUs
收藏 引用
Frontiers of Computer Science 2015年 第3期9卷 431-441页
作者: Chenggang Clarence YAN Hui YU Weizhi XU Yingping ZHANG Bochuan CHEN Zhu TIAN Yuxuan WANG Jian YIN Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Institute of Microelectronics Tsinghua University Beijing 100084 China Automation Department Tsinghua University Beijing 100084 China State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China State Grid Information & Communication Company of Hunan EPC Changsha 410007 China Department of Computer Shandong University Weihai 250101 China
It is an important task to improve performance for sparse matrix vector multiplication (SpMV), and it is a difficult task because of its irregular memory access. Gen- eral purpose GPU (GPGPU) provides high computi... 详细信息
来源: 评论
Real-time task scheduling algorithm for cloud computing based on particle swarm optimization  2nd
Real-time task scheduling algorithm for cloud computing base...
收藏 引用
2nd International Conference on cloud computing and Big Data, cloudCom-Asia 2015
作者: Chen, Huangning Guo, Wenzhong College of Mathematics and Computer Science Fuzhou University Fuzhou China Fujian Provincial Key Lab of the Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China
As a new computing paradigm, cloud computing is receiving considerable attention in both industry and academia. Task scheduling plays an important role in large-scale distributed systems. However, most previous work o... 详细信息
来源: 评论