咨询与建议

限定检索结果

文献类型

  • 402 篇 会议
  • 227 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 630 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 401 篇 工学
    • 305 篇 计算机科学与技术...
    • 262 篇 软件工程
    • 77 篇 信息与通信工程
    • 38 篇 控制科学与工程
    • 34 篇 生物工程
    • 33 篇 机械工程
    • 29 篇 化学工程与技术
    • 27 篇 光学工程
    • 27 篇 电子科学与技术(可...
    • 23 篇 电气工程
    • 19 篇 生物医学工程(可授...
    • 15 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 农业工程
    • 10 篇 安全科学与工程
    • 9 篇 动力工程及工程热...
    • 8 篇 材料科学与工程(可...
  • 206 篇 理学
    • 126 篇 数学
    • 55 篇 物理学
    • 47 篇 生物学
    • 37 篇 统计学(可授理学、...
    • 21 篇 化学
    • 10 篇 系统科学
  • 136 篇 管理学
    • 97 篇 图书情报与档案管...
    • 42 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 15 篇 农学
    • 12 篇 作物学
  • 15 篇 医学
    • 12 篇 临床医学
    • 9 篇 基础医学(可授医学...
  • 12 篇 法学
    • 11 篇 社会学
  • 7 篇 经济学
  • 3 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 40 篇 semantics
  • 27 篇 training
  • 21 篇 feature extracti...
  • 16 篇 deep learning
  • 14 篇 data mining
  • 14 篇 computational mo...
  • 14 篇 data models
  • 13 篇 visualization
  • 13 篇 computer vision
  • 12 篇 face recognition
  • 11 篇 neural networks
  • 10 篇 robustness
  • 9 篇 object detection
  • 9 篇 forecasting
  • 8 篇 reinforcement le...
  • 8 篇 convolution
  • 8 篇 mapreduce
  • 7 篇 optimization
  • 7 篇 predictive model...
  • 7 篇 navigation

机构

  • 103 篇 university of ch...
  • 65 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 24 篇 school of comput...
  • 20 篇 key laboratory o...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 19 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 15 篇 key lab. of inte...
  • 15 篇 key lab. of inte...
  • 14 篇 shanghai key lab...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...
  • 12 篇 school of cyber ...
  • 11 篇 institute of com...
  • 10 篇 graduate univers...
  • 10 篇 microsoft cloud ...
  • 9 篇 microsoft resear...

作者

  • 33 篇 huang qingming
  • 28 篇 zhuge hai
  • 24 篇 xilin chen
  • 21 篇 cao juan
  • 19 篇 jiang yu-gang
  • 19 篇 gao wen
  • 18 篇 liu qun
  • 18 篇 xu qianqian
  • 17 篇 shiguang shan
  • 15 篇 wu zuxuan
  • 14 篇 yang zhiyong
  • 14 篇 qingming huang
  • 14 篇 qing he
  • 14 篇 cao xiaochun
  • 13 篇 sun xiaoping
  • 12 篇 shuqiang jiang
  • 12 篇 sheng qiang
  • 11 篇 hai zhuge
  • 11 篇 li hua
  • 11 篇 he qing

语言

  • 574 篇 英文
  • 48 篇 其他
  • 15 篇 中文
检索条件"机构=Key Lab of Cloud Computing and Intelligent Information Processing"
630 条 记 录,以下是81-90 订阅
排序:
Fact-Preserved Personalized News Headline Generation
Fact-Preserved Personalized News Headline Generation
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Zhao Yang Junhong Lian Xiang Ao Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Institute of Intelligent Computing Technology Suzhou CAS
Personalized news headline generation, aiming at generating user-specific headlines based on readers’ preferences, burgeons a recent flourishing research direction. Existing studies generally inject a user interest e...
来源: 评论
Masked Video Distillation: Rethinking Masked Feature Modeling for Self-supervised Video Representation Learning
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rui Chen, Dongdong Wu, Zuxuan Chen, Yinpeng Dai, Xiyang Liu, Mengchen Yuan, Lu Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan Univeristy China Microsoft Cloud + AI
Benefiting from masked visual modeling, self-supervised video representation learning has achieved remarkable progress. However, existing methods focus on learning representations from scratch through reconstructing l... 详细信息
来源: 评论
Non-autoregressive machine translation with probabilistic context-free grammar  23
Non-autoregressive machine translation with probabilistic co...
收藏 引用
Proceedings of the 37th International Conference on Neural information processing Systems
作者: Shangtong Gui Chenze Shao Zhengrui Ma Xishan Zhang Yunji Chen Yang Feng State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences and Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences and Cambricon Technologies State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences
Non-autoregressive Transformer(NAT) significantly accelerates the inference of neural machine translation. However, conventional NAT models suffer from limited expression power and performance degradation compared to ...
来源: 评论
A Semantic Overlay on Blockchain for Supporting Traceability in Cross-border Logistics
A Semantic Overlay on Blockchain for Supporting Traceability...
收藏 引用
Digital Twins and Parallel Intelligence (DTPI), IEEE International Conference on
作者: Xiaoping Sun Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Traceability is important for maintaining quality of logistics transactions and improving logistics efficiency. Implementing traceability for cross-border logistics is facing challenges when it lacks global centralize... 详细信息
来源: 评论
Harnessing Hierarchical label Distribution Variations in Test Agnostic Long-tail Recognition  41
Harnessing Hierarchical Label Distribution Variations in Tes...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Yang, Zhiyong Xu, Qianqian Wang, Zitai Li, Sicong Han, Boyu Bao, Shilong Cao, Xiaochun Huang, Qingming School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS China Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China BDKM University of Chinese Academy of Sciences China
This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test label distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can b... 详细信息
来源: 评论
Exploiting Knowledge Embedding to Improve the Description for Image Captioning  5th
Exploiting Knowledge Embedding to Improve the Description fo...
收藏 引用
5th China Conference on Knowledge Graph, and Semantic computing, CCKS 2020
作者: Song, Dandan Peng, Cuimei Yang, Huan Liao, Lejian Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications Beijing Key Laboratory of Intelligent Information Technology School of Computer Science and Technology Beijing Institute of Technology Beijing China
Most existing methods for image captioning are based on the encoder-decoder framework which directly translates visual features into sentences, without exploiting commonsense knowledge available in the form of knowled... 详细信息
来源: 评论
Ten Words Only Still Help: Improving Black-Box AI-Generated Text Detection via Proxy-Guided Efficient Re-Sampling
arXiv
收藏 引用
arXiv 2024年
作者: Shi, Yuhui Sheng, Qiang Cao, Juan Mi, Hao Hu, Beizhe Wang, Danding Key Lab of Intelligent Information Processing Chinese Academy of Sciences Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Xi’an Jiaotong University China
With the rapidly increasing application of large language models (LLMs), their abuse has caused many undesirable societal problems such as fake news, academic dishonesty, and information pollution. This makes AI-gener... 详细信息
来源: 评论
OmniViD: A Generative Framework for Universal Video Understanding
OmniViD: A Generative Framework for Universal Video Understa...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junke Wang Dongdong Chen Chong Luo Bo He Lu Yuan Zuxuan Wu Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Cloud + AI Microsoft Research Asia University of Maryland College Park
The core of video understanding tasks, such as recognition, captioning, and tracking, is to automatically de-tect objects or actions in a video and analyze their temporal evolution. Despite sharing a common goal, diff... 详细信息
来源: 评论
Harnessing hierarchical label distribution variations in test agnostic long-tail recognition  24
Harnessing hierarchical label distribution variations in tes...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Zhiyong Yang Qianqian Xu Zitai Wang Sicong Li Boyu Han Shilong Bao Xiaochun Cao Qingming Huang School of Computer Science and Tech. University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University School of Computer Science and Tech. University of Chinese Academy of Sciences and 2Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and BDKM University of Chinese Academy of Sciences
This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test label distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can b...
来源: 评论
Look Before You Match: Instance Understanding Matters in Video Object Segmentation
Look Before You Match: Instance Understanding Matters in Vid...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Junke Wang Dongdong Chen Zuxuan Wu Chong Luo Chuanxin Tang Xiyang Dai Yucheng Zhao Yujia Xie Lu Yuan Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing Microsoft Cloud + AI Microsoft Research Asia
Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, ...
来源: 评论