咨询与建议

限定检索结果

文献类型

  • 225 篇 会议
  • 139 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 232 篇 工学
    • 195 篇 计算机科学与技术...
    • 159 篇 软件工程
    • 52 篇 信息与通信工程
    • 22 篇 生物工程
    • 19 篇 控制科学与工程
    • 14 篇 生物医学工程(可授...
    • 10 篇 化学工程与技术
    • 9 篇 光学工程
    • 9 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 仪器科学与技术
    • 6 篇 动力工程及工程热...
    • 6 篇 电气工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 交通运输工程
    • 3 篇 建筑学
  • 105 篇 理学
    • 57 篇 数学
    • 26 篇 生物学
    • 21 篇 物理学
    • 18 篇 统计学(可授理学、...
    • 10 篇 化学
    • 8 篇 系统科学
  • 78 篇 管理学
    • 54 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 10 篇 法学
    • 9 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 经济学
  • 2 篇 文学
  • 2 篇 农学

主题

  • 17 篇 semantics
  • 11 篇 data engineering
  • 10 篇 laboratories
  • 10 篇 data mining
  • 9 篇 training
  • 8 篇 knowledge engine...
  • 8 篇 wireless sensor ...
  • 8 篇 machine learning
  • 7 篇 query processing
  • 7 篇 feature extracti...
  • 7 篇 information retr...
  • 7 篇 forecasting
  • 6 篇 object detection
  • 6 篇 knowledge manage...
  • 6 篇 search engines
  • 6 篇 contrastive lear...
  • 6 篇 costs
  • 5 篇 xml
  • 5 篇 embeddings
  • 4 篇 helium

机构

  • 87 篇 school of inform...
  • 50 篇 key laboratory o...
  • 18 篇 key lab of data ...
  • 18 篇 key laboratory o...
  • 11 篇 key laboratory o...
  • 10 篇 gaoling school o...
  • 10 篇 engineering rese...
  • 10 篇 beijing key labo...
  • 9 篇 key lab. of inte...
  • 9 篇 department of ma...
  • 8 篇 school of comput...
  • 8 篇 peng cheng labor...
  • 8 篇 key laboratory o...
  • 8 篇 key lab of data ...
  • 7 篇 renmin universit...
  • 7 篇 key laboratory o...
  • 7 篇 university of ch...
  • 7 篇 school of comput...
  • 7 篇 school of cyber ...
  • 7 篇 key lab of big d...

作者

  • 35 篇 du xiaoyong
  • 32 篇 chen hong
  • 30 篇 li xirong
  • 22 篇 li cuiping
  • 20 篇 xiaoyong du
  • 15 篇 hong chen
  • 13 篇 he jun
  • 12 篇 liu jun
  • 11 篇 liu hongyan
  • 11 篇 yang gang
  • 11 篇 wang shan
  • 9 篇 wang shuai
  • 9 篇 dou zhicheng
  • 8 篇 wen ji-rong
  • 8 篇 shan wang
  • 8 篇 zhang lingling
  • 8 篇 huang qingming
  • 8 篇 xu qianqian
  • 8 篇 cuiping li
  • 7 篇 zhao suyun

语言

  • 339 篇 英文
  • 23 篇 其他
  • 5 篇 中文
检索条件"机构=Key Lab of Data Engineering and Knowledge Engineering of MOE"
367 条 记 录,以下是181-190 订阅
Mining Dual Emotion for Fake News Detection
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Xueyao Cao, Juan Li, Xirong Sheng, Qiang Zhong, Lei Shu, Kai Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Key Lab of Data Engineering and Knowledge Engineering Renmin University of China Beijing China Illinois Institute of Technology ChicagoIL United States
Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher... 详细信息
来源: 评论
Adaptive gradient methods with dynamic bound of learning rate
arXiv
收藏 引用
arXiv 2019年
作者: Luo, Liangchen Xiong, Yuanhao Liu, Yan Sun, Xu MOE Key Lab of Computational Linguistics School of EECS Peking University College of Information Science and Electronic Engineering Zhejiang University Department of Computer Science University of Southern California Center for Data Science Beijing Institute of Big Data Research Peking University
Adaptive optimization methods such as ADAGRAD, RMSPROP and ADAM have been proposed to achieve a rapid training process with an element-wise scaling term on learning rates. Though prevailing, they are observed to gener... 详细信息
来源: 评论
COCO-CN for cross-lingual image tagging, captioning and retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Li, Xirong Xu, Chaoxi Wang, Xiaoxu Lan, Weiyu Jia, Zhengxiong Yang, Gang Xu, Jieping Key Lab of Data Engineering and Knowledge Engineering Renmin University of China AI & Media Computing Lab School of Information Renmin University of China Beijing100872 China
This paper contributes to cross-lingual image annotation and retrieval in terms of data and baseline methods. We propose COCO-CN, a novel dataset enriching MS-COCO with manually written Chinese sentences and tags. For... 详细信息
来源: 评论
QUANTUM LOVÁSZ LOCAL LEMMA: SHEARER’S BOUND IS TIGHT
arXiv
收藏 引用
arXiv 2018年
作者: He, Kun Li, Qian Sun, Xiaoming Zhang, Jiapeng The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China Beijing China Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China University of Southern California United States
The Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis... 详细信息
来源: 评论
Impact of Prior knowledge and data Correlation on Privacy Leakage: A Unified Analysis
arXiv
收藏 引用
arXiv 2019年
作者: Li, Yanan Ren, Xuebin Yang, Shusen Yang, Xinyu National Engineering Laboratory for Big Data Analytics [NEL-BDA Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Mathematics and Statistics Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Electronic and Information Engineering Xi’an Jiaotong University Xi’an Shaanxi710049 China Ministry of Education Key Lab for Intelligent Networks and Network Security [MOE KLINNS Lab Xi’an Jiaotong University Xi’an Shaanxi710049 China
It has been widely understood that differential privacy (DP) can guarantee rigorous privacy against adversaries with arbitrary prior knowledge. However, recent studies demonstrate that this may not be true for correla... 详细信息
来源: 评论
Bridging explicit and implicit deep generative models via neural Stein estimators
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Qitian Gao, Rui Zha, Hongyuan Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University University of Texas Austin United States School of Data Science Shenzhen Institute of Artificial Intelligence and Robotics for Society The Chinese University of Hong Kong Shenzhen Hong Kong The Chinese University of Hong Kong Shenzhen China
There are two types of deep generative models: explicit and implicit. The former defines an explicit density form that allows likelihood inference;while the latter targets a flexible transformation from random noise t...
来源: 评论
Learning personalized attribute preference via multi-task auc optimization
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Zhiyong Xu, Qianqian Cao, Xiaochun Huang, Qingming SKLOIS Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management CAS Beijing China
Traditionally, most of the existing attribute learning methods are trained based on the consensus of annotations aggregated from a limited number of annotators. However, the consensus might fail in settings, especiall... 详细信息
来源: 评论
Τ-FPL: Tolerance-constrained learning in linear time  32
Τ-FPL: Tolerance-constrained learning in linear time
收藏 引用
32nd AAAI Conference on Artificial Intelligence, AAAI 2018
作者: Zhang, Ao Li, Nan Pu, Jian Wang, Jun Yan, Junchi Zha, Hongyuan Shanghai Key Laboratory of Trustworthy Computing MOE International Joint Lab of Trustworthy Software School of Computer Science and Software Engineering East China Normal University Shanghai China Institute of Data Science and Technologies Alibaba Group Hangzhou China IBM Research China Georgia Institute of Technology Atlante United States
In many real-world applications, learning a classifier with false-positive rate under a specified tolerance is appealing. Existing approaches either introduce prior knowledge dependent label cost or tune parameters ba... 详细信息
来源: 评论
iSplit LBI: Individualized partial ranking with ties via split LBI
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Qianqian Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS Microsoft Research Asia State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences Key Laboratory of Big Data Mining and Knowledge Management CAS Peng Cheng Laboratory Department of Mathematics Hong Kong University of Science and Technology Hong Kong
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different... 详细信息
来源: 评论
SEED: Entity oriented information search and exploration  22
SEED: Entity oriented information search and exploration
收藏 引用
22nd International Conference on Intelligent User Interfaces, IUI 2017
作者: Chen, Jun Jacucci, Giulio Chen, Yueguo Ruotsalo, Tuukka School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Helsinki Institute for Information Technology HIIT Department of Computer Science University of Helsinki Finland
Entity search and exploration can enrich search user interfaces by presenting relevant information instantly and offering relevant exploration pointers to users. Previous research has demonstrated that large knowledge... 详细信息
来源: 评论