咨询与建议

限定检索结果

文献类型

  • 174 篇 会议
  • 65 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 241 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 162 篇 工学
    • 136 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 40 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 14 篇 生物工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 6 篇 生物医学工程(可授...
    • 5 篇 动力工程及工程热...
    • 5 篇 化学工程与技术
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 电气工程
    • 3 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 土木工程
  • 60 篇 理学
    • 36 篇 数学
    • 14 篇 生物学
    • 10 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 系统科学
  • 53 篇 管理学
    • 35 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 7 篇 法学
    • 6 篇 社会学
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
  • 1 篇 农学

主题

  • 11 篇 data engineering
  • 10 篇 laboratories
  • 10 篇 semantics
  • 9 篇 data mining
  • 8 篇 knowledge engine...
  • 8 篇 wireless sensor ...
  • 7 篇 query processing
  • 6 篇 search engines
  • 6 篇 costs
  • 6 篇 information retr...
  • 5 篇 xml
  • 5 篇 knowledge manage...
  • 4 篇 helium
  • 4 篇 indexes
  • 4 篇 graphics process...
  • 4 篇 signal encoding
  • 4 篇 ontologies
  • 4 篇 algorithm design...
  • 3 篇 text categorizat...
  • 3 篇 collaborative fi...

机构

  • 88 篇 school of inform...
  • 50 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 key lab of data ...
  • 11 篇 key laboratory o...
  • 10 篇 gaoling school o...
  • 10 篇 engineering rese...
  • 10 篇 beijing key labo...
  • 9 篇 department of ma...
  • 8 篇 key lab of data ...
  • 7 篇 renmin universit...
  • 7 篇 key laboratory o...
  • 6 篇 key laboratory o...
  • 5 篇 moe key lab of d...
  • 5 篇 key laboratory o...
  • 5 篇 university of ch...
  • 5 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 information scho...
  • 4 篇 college of compu...

作者

  • 35 篇 du xiaoyong
  • 32 篇 chen hong
  • 30 篇 li xirong
  • 22 篇 li cuiping
  • 20 篇 xiaoyong du
  • 15 篇 hong chen
  • 13 篇 he jun
  • 12 篇 yang gang
  • 11 篇 liu hongyan
  • 11 篇 wang shan
  • 9 篇 dou zhicheng
  • 8 篇 wen ji-rong
  • 8 篇 shan wang
  • 8 篇 cuiping li
  • 7 篇 zhao suyun
  • 7 篇 liu tao
  • 7 篇 chen jinchuan
  • 6 篇 cao juan
  • 6 篇 feng zhang
  • 6 篇 fan zhaoxin

语言

  • 229 篇 英文
  • 8 篇 其他
  • 4 篇 中文
检索条件"机构=Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin"
241 条 记 录,以下是1-10 订阅
排序:
Cutting Learned Index into Pieces: An In-depth Inquiry into Updatable Learned Indexes  39
Cutting Learned Index into Pieces: An In-depth Inquiry into ...
收藏 引用
39th IEEE International Conference on data engineering, ICDE 2023
作者: Ge, Jiake Shi, Boyu Chai, Yanfeng Luo, Yuanhui Guo, Yunda He, Yinxuan Chai, Yunpeng Moe Key Laboratory of Data Engineering and Knowledge Engineering China Renmin University of China School of Information China
Numerous high-performance updatable learned indexes have recently been designed to support the writing requirements in practical systems. Researchers have proposed various strategies to improve the availability of upd... 详细信息
来源: 评论
FOSS: A Self-Learned Doctor for Query Optimizer  40
FOSS: A Self-Learned Doctor for Query Optimizer
收藏 引用
40th IEEE International Conference on data engineering, ICDE 2024
作者: Zhong, Kai Sun, Luming Ji, Tao Li, Cuiping Chen, Hong Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Shanghai Yunxi Technology Co. Ltd. China Engineering Research Center of Database and Business Intelligence MOE China
Various works have utilized deep learning to address the query optimization problem in database system. They either learn to construct plans from scratch in a bottom-up manner or steer the plan generation behavior of ... 详细信息
来源: 评论
Federated Incremental Named Entity Recognition  31
Federated Incremental Named Entity Recognition
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Liu, Zesheng Zhu, Qiannan Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China School of Artificial Intelligence Beijing Normal University Beijing China Engineering Research Center of Intelligent Technology and Educational Application MOE China
Federated learning-based Named Entity Recognition (FNER) has attracted widespread attention through decentralized training on local clients. However, most FNER models assume that entity types are pre-fixed, so in prac... 详细信息
来源: 评论
Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
Semi-Supervised Learning via Weight-aware Distillation under...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Pan Du Suyun Zhao Zisen Sheng Cuiping Li Hong Chen Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China Renmin University of China Beijing China
Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, t...
来源: 评论
Towards annotation-free evaluation of cross-lingual image captioning  2
Towards annotation-free evaluation of cross-lingual image ca...
收藏 引用
2nd ACM International Conference on Multimedia in Asia, MMAsia 2020
作者: Chen, Aozhu Huang, Xinyi Lin, Hailan Li, Xirong Moe Key Lab of Data Engineering and Knowledge Engineering Renmin University of China Beijing China
Cross-lingual image captioning, with its ability to caption an unlabeled image in a target language other than English, is an emerging topic in the multimedia field. In order to save the precious human resource from r... 详细信息
来源: 评论
Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
arXiv
收藏 引用
arXiv 2023年
作者: Du, Pan Zhao, Suyun Sheng, Zisen Li, Cuiping Chen, Hong Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China China Renmin University of China Beijing China
Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, t... 详细信息
来源: 评论
Personalized Clustering via Targeted Representation Learning  39
Personalized Clustering via Targeted Representation Learning
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Geng, Xiwen Zhao, Suyun Yu, Yixin Peng, Borui Du, Pan Chen, Hong Li, Cuiping Wang, Mengdie Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China China School of Information Renmin University of China China School of Statistics Remin University of China China
Clustering traditionally aims to reveal a natural grouping structure within unlabeled data. However, this structure may not always align with users’ preferences. In this paper, we propose a personalized clustering me... 详细信息
来源: 评论
Superclass Learning with Representation Enhancement
Superclass Learning with Representation Enhancement
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zeyu Gan Suyun Zhao Jinlong Kang Liyuan Shang Hong Chen Cuiping Li Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China Beijing China Renmin University of China Beijing China
In many real scenarios, data are often divided into a handful of artificial super categories in terms of expert knowledge rather than the representations of images. Concretely, a superclass may contain massive and var...
来源: 评论
A Query Optimization Method Utilizing Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Yao, Zhiming Li, Haoyang Zhang, Jing Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China
Query optimization is a critical task in database systems, focused on determining the most efficient way to execute a query from an enormous set of possible strategies. Traditional approaches rely on heuristic search ... 详细信息
来源: 评论
Enabling Efficient NVM-Based Text Analytics without Decompression
Enabling Efficient NVM-Based Text Analytics without Decompre...
收藏 引用
International Conference on data engineering
作者: Xiaokun Fang Feng Zhang Junxiang Nong Mingxing Zhang Puyun Hu Yunpeng Chai Xiaoyong Du Key Laboratory of Data Engineering and Knowledge Engineering (MOE) and School of Information Renmin University of China Department of Computer Science and Engineering Tsinghua University
Text analytics directly on compression (TADOC) is a promising technology designed for handling big data analytics. However, a substantial amount of DRAM is required for high performance, which limits its usage in many... 详细信息
来源: 评论