咨询与建议

限定检索结果

文献类型

  • 186 篇 会议
  • 109 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 297 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 200 篇 工学
    • 162 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 48 篇 信息与通信工程
    • 21 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 控制科学与工程
    • 10 篇 电子科学与技术(可...
    • 8 篇 光学工程
    • 8 篇 仪器科学与技术
    • 8 篇 化学工程与技术
    • 7 篇 动力工程及工程热...
    • 6 篇 机械工程
    • 6 篇 电气工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 土木工程
  • 95 篇 理学
    • 49 篇 数学
    • 25 篇 生物学
    • 21 篇 物理学
    • 14 篇 统计学(可授理学、...
    • 7 篇 化学
    • 5 篇 系统科学
  • 66 篇 管理学
    • 44 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 9 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 14 篇 semantics
  • 11 篇 data engineering
  • 10 篇 laboratories
  • 9 篇 data mining
  • 8 篇 knowledge engine...
  • 8 篇 wireless sensor ...
  • 6 篇 query processing
  • 6 篇 knowledge manage...
  • 6 篇 search engines
  • 6 篇 costs
  • 6 篇 machine learning
  • 6 篇 information retr...
  • 5 篇 xml
  • 5 篇 training
  • 4 篇 helium
  • 4 篇 collaborative fi...
  • 4 篇 indexes
  • 4 篇 graphics process...
  • 4 篇 signal encoding
  • 4 篇 ontologies

机构

  • 92 篇 school of inform...
  • 49 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 key lab of data ...
  • 11 篇 gaoling school o...
  • 11 篇 key laboratory o...
  • 11 篇 beijing key labo...
  • 9 篇 engineering rese...
  • 9 篇 department of ma...
  • 7 篇 renmin universit...
  • 7 篇 key laboratory o...
  • 7 篇 shenzhen researc...
  • 7 篇 key lab of data ...
  • 6 篇 key laboratory o...
  • 5 篇 moe key lab of d...
  • 5 篇 key laboratory o...
  • 5 篇 moe key lab of a...
  • 5 篇 university of ch...
  • 5 篇 school of comput...
  • 5 篇 college of compu...

作者

  • 35 篇 du xiaoyong
  • 33 篇 chen hong
  • 33 篇 li xirong
  • 20 篇 li cuiping
  • 20 篇 xiaoyong du
  • 16 篇 hong chen
  • 13 篇 he jun
  • 11 篇 liu hongyan
  • 11 篇 yang gang
  • 11 篇 wang shan
  • 10 篇 wang shuai
  • 10 篇 dou zhicheng
  • 9 篇 cuiping li
  • 8 篇 wen ji-rong
  • 7 篇 shan wang
  • 7 篇 cao juan
  • 7 篇 dong jianfeng
  • 7 篇 liu tao
  • 7 篇 chen jinchuan
  • 6 篇 zhao suyun

语言

  • 287 篇 英文
  • 7 篇 其他
  • 3 篇 中文
检索条件"机构=Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China"
297 条 记 录,以下是1-10 订阅
排序:
Federated Incremental Named Entity Recognition  31
Federated Incremental Named Entity Recognition
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Liu, Zesheng Zhu, Qiannan Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China School of Artificial Intelligence Beijing Normal University Beijing China Engineering Research Center of Intelligent Technology and Educational Application MOE China
Federated learning-based Named Entity Recognition (FNER) has attracted widespread attention through decentralized training on local clients. However, most FNER models assume that entity types are pre-fixed, so in prac... 详细信息
来源: 评论
Towards a Theoretical Understanding of Semi-Supervised Learning Under Class Distribution Mismatch
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年 第6期47卷 4853-4868页
作者: Pan Du Suyun Zhao Puhui Tan Zisen Sheng Zeyu Gan Hong Chen Cuiping Li School of Information Renmin University of China Beijing China Engineering Research Center of Database and Business Intelligence Ministry of Education (MOE) Beijing China Key Laboratory of Data Engineering and Knowledge Engineering Ministry of Education (MOE) Beijing China School of Statistics Renmin University of China Beijing China
Semi-supervised learning (SSL) confronts a formidable challenge under class distribution mismatch, wherein unlabeled data contain numerous categories absent in the labeled dataset. Traditional SSL methods undergo perf... 详细信息
来源: 评论
A Query Optimization Method Utilizing Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Yao, Zhiming Li, Haoyang Zhang, Jing Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China
Query optimization is a critical task in database systems, focused on determining the most efficient way to execute a query from an enormous set of possible strategies. Traditional approaches rely on heuristic search ... 详细信息
来源: 评论
LLMIdxAdvis: Resource-Efficient Index Advisor Utilizing Large Language Model
arXiv
收藏 引用
arXiv 2025年
作者: Zhao, Xinxin Li, Haoyang Zhang, Jing Huang, Xinmei Zhang, Tieying Chen, Jianjun Shi, Rui Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China ByteDance China
Index recommendation is essential for improving query performance in database management systems (DBMSs) through creating an optimal set of indexes under specific constraints. Traditional methods, such as heuristic an... 详细信息
来源: 评论
OmniSQL: Synthesizing High-quality Text-to-SQL data at Scale
arXiv
收藏 引用
arXiv 2025年
作者: Li, Haoyang Wu, Shang Zhang, Xiaokang Huang, Xinmei Zhang, Jing Jiang, Fuxin Wang, Shuai Zhang, Tieying Chen, Jianjun Shi, Rui Chen, Hong Li, Cuiping Engineering Research Center of Database and Business Intelligence MOE China School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China ByteDance Inc China
Text-to-SQL, the task of translating natural language questions into SQL queries, plays a crucial role in enabling non-experts to interact with databases. While recent advancements in large language models (LLMs) have... 详细信息
来源: 评论
LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Yuxuan Zhang, Jing Chen, Xiaodong Zhao, Zhe Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering Beijing China Engineering Research Center of Database and Business Intelligence Beijing China Tencent AI Lab Beijing China
Existing low-rank adaptation (LoRA) methods face challenges on sparse large language models (LLMs) due to the inability to maintain sparsity. Recent works introduced methods that maintain sparsity by augmenting LoRA t... 详细信息
来源: 评论
SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking  25
SoAy: A Solution-based LLM API-using Methodology for Academi...
收藏 引用
Proceedings of the 31st ACM SIGKDD Conference on knowledge Discovery and data Mining V.1
作者: Yuanchun Wang Jifan Yu Zijun Yao Jing Zhang Yuyang Xie Shangqing Tu Yiyang Fu Youhe Feng Jinkai Zhang Jingyao Zhang Bowen Huang Yuanyao Li Huihui Yuan Lei Hou Juanzi Li Jie Tang School of Information Renmin University of China Beijing China & Key Laboratory of Data Engineering and Knowledge Engineering MOE Beijing China Institute of Education Tsinghua University Beijing China Department of Computer Science and Technology Tsinghua University Beijing China School of Information Renmin University of China Beijing China & Engineering Research Center of Database and Business Intelligence MOE Beijing China School of Information Renmin University of China Beijing China Zhipu AI Beijing China
Applying large language models (LLMs) to academic API usage shows promise in reducing researchers' efforts to seek academic information. However, current LLM methods for using APIs struggle with the complex API co... 详细信息
来源: 评论
database Research: Achievements and Challenges
收藏 引用
Journal of Computer Science & Technology 2006年 第5期21卷 823-837页
作者: 王珊 杜小勇 孟小峰 陈红 School of Information Renmin University of China MOE Key Lab of Data Engineering and Knowledge Engineering Beijing 100872 P.R. China
database system is the infrastructure of the modern information system. The R&D in the database system and its technologies is one of the important research topics in the field. The database R&D in china took off la... 详细信息
来源: 评论
An effective scheme for top-k frequent itemset mining under differential privacy conditions
收藏 引用
Science china(Information Sciences) 2020年 第5期63卷 200-202页
作者: Wenjuan LIANG Hong CHEN Jing ZHANG Dan ZHAO Cuiping LI Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China College of Computer and Information Engineering Henan University
Dear editor,Frequent itemset mining (FIM) is important in many data mining applications [1], such as web log mining and trend analysis. However, if the data are sensitive (e.g., web browsing history), directly releasi... 详细信息
来源: 评论
MRST-- An Efficient Monitoring Technology of Summarization on Stream data
收藏 引用
Journal of Computer Science & Technology 2007年 第2期22卷 190-196页
作者: 樊小泊 解婷婷 李翠平 陈红 School of Information Renmin University of China Beijing 100872 China Key Laboratory of Data Engineering and Knowledge Engineering MOE Beijing 100872 China
Monitoring on data streams is an efficient method of acquiring the characters of data stream. However the available resources for each data stream are limited, so the problem of how to use the limited resources to pro... 详细信息
来源: 评论