咨询与建议

限定检索结果

文献类型

  • 52 篇 会议
  • 37 篇 期刊文献

馆藏范围

  • 89 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 50 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 12 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 10 篇 光学工程
    • 7 篇 机械工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 1 篇 力学(可授工学、理...
    • 1 篇 土木工程
  • 37 篇 理学
    • 22 篇 数学
    • 9 篇 生物学
    • 8 篇 物理学
    • 5 篇 化学
    • 4 篇 统计学(可授理学、...
    • 1 篇 地球物理学
  • 22 篇 管理学
    • 13 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 3 篇 药学(可授医学、理...
    • 2 篇 医学技术(可授医学...
  • 3 篇 农学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 6 篇 semantics
  • 5 篇 training
  • 3 篇 image segmentati...
  • 3 篇 predictive model...
  • 3 篇 machine learning
  • 3 篇 proteins
  • 2 篇 conferences
  • 2 篇 deep learning
  • 2 篇 deep neural netw...
  • 2 篇 ant colony optim...
  • 2 篇 sun
  • 2 篇 membrane computi...
  • 2 篇 newton-raphson m...
  • 2 篇 vectors
  • 2 篇 data mining
  • 2 篇 intelligent netw...
  • 2 篇 pattern recognit...
  • 2 篇 bioinformatics
  • 2 篇 computer vision
  • 2 篇 computer network...

机构

  • 24 篇 key lab of intel...
  • 8 篇 school of comput...
  • 6 篇 institute of sci...
  • 5 篇 moe frontiers ce...
  • 5 篇 shanghai key lab...
  • 5 篇 zhangjiang fudan...
  • 5 篇 school of comput...
  • 4 篇 key lab of intel...
  • 4 篇 ministry of educ...
  • 3 篇 school of intern...
  • 3 篇 moe key laborato...
  • 3 篇 school of comput...
  • 3 篇 saic motor ai la...
  • 3 篇 zhongguancun lab...
  • 3 篇 moe key lab of s...
  • 3 篇 information mate...
  • 3 篇 institute of ima...
  • 2 篇 electrical engin...
  • 2 篇 department of ne...
  • 2 篇 riken aip japan.

作者

  • 17 篇 luo bin
  • 10 篇 tang jin
  • 9 篇 bin luo
  • 8 篇 li chenglong
  • 6 篇 sun dengdi
  • 5 篇 huang xiaodi
  • 5 篇 zhu shanfeng
  • 5 篇 tu zhengzheng
  • 5 篇 haifeng zhao
  • 4 篇 wang hai-xian
  • 4 篇 zhang xingyi
  • 4 篇 bian junyi
  • 4 篇 chen si-bao
  • 3 篇 wan-li lyu
  • 3 篇 yuhai yang
  • 3 篇 zhai weiqi
  • 3 篇 fang xianyong
  • 3 篇 ding zhuanlian
  • 3 篇 jingwen jia
  • 3 篇 benis arriel

语言

  • 87 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Key Lab of Intelligent Computing and Signal Processing of MOE & School of Computer and Technology"
89 条 记 录,以下是1-10 订阅
排序:
DMFVAE:miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder
收藏 引用
Frontiers of computer Science 2024年 第6期18卷 259-270页
作者: Pijing WEI Qianqian WANG Zhen GAO Ruifen CAO Chunhou ZHENG Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial IntelligenceAnhui UniversityHefei 230601China
MicroRNAs(miRNAs)are closely related to numerous complex human diseases,therefore,exploring miRNA-disease associations(MDAs)can help people gain a better understanding of complex disease *** increasing number of compu... 详细信息
来源: 评论
ϵ-π: A Nonparametric Model for Neural Power Spectra Decomposition
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2024年 第5期28卷 2624-2635页
作者: Hu, Shiang Zhang, Zhihao Zhang, Xiaochu Wu, Xiaopei Valdes-Sosa, Pedro A. Anhui University Anhui Provincial Key Lab of Multimodal Cognitive Computation Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Hefei230601 China University of Science and Technology of China School of Humanities and Social Science Department of Psychology Hefei230026 China University of Electronic Science and Technology of China MOE Key Lab for Neuroinformation School of Life Science and Technology Chengdu611731 China
The power spectra estimated from the brain recordings are the mixed representation of aperiodic transient activity and periodic oscillations, i.e., aperiodic component (AC) and periodic component (PC). Quantitative ne... 详细信息
来源: 评论
Improving Transferability Reversible Adversarial Examples Based on Flipping Transformation  9th
Improving Transferability Reversible Adversarial Examples Ba...
收藏 引用
9th International Conference of Pioneering computer Scientists, Engineers and Educators, ICPCSEE 2023
作者: Fang, Youqing Jia, Jingwen Yang, Yuhai Lyu, Wanli Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei230601 China
Adding subtle perturbations to an image can cause the classification model to misclassify, and such images are called adversarial examples. Adversarial examples threaten the safe use of deep neural networks, but when ... 详细信息
来源: 评论
Adversarial Example Generation Method Based on Probability Histogram Equalization  42
Adversarial Example Generation Method Based on Probability H...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Fang, Youqing Jia, Jingwen Yang, Yuhai Lyu, Wan-Li School of Computer Science and Technology Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Anhui University Hefei230601 China
CNNs (Convolutional Neural Networks) have a good performance on most classification tasks, but they are vulnerable when meeting adversarial examples. Research and design of highly aggressive adversarial examples can h... 详细信息
来源: 评论
Adaptively feature matching via joint transformational-spatial clustering
Adaptively feature matching via joint transformational-spati...
收藏 引用
作者: Wang, Linbo Tan, Li Fang, Xianyong Guo, Yanwen Wan, Shaohua MOE Key Laboratory of Intelligent Computing and Signal Processing School of Computer Science and Technology Anhui University Hefei China National Key Lab for Novel Software Technology Nanjing University Nanjing China School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan China
The transformational and spatial proximities are important cues for identifying inliers from an appearance based match set because correct matches generally stay close in input images and share similar local transform... 详细信息
来源: 评论
Exploring Trial-and-Error in Deep Learning:Initial Application to Isotope Detection in Mass Spectrometry
收藏 引用
Big Data Mining and Analytics 2024年 第4期7卷 1251-1261页
作者: Qihong Jiao Yuxiao Wang Yongshuai Wang Shiwei Sun Xuefeng Cui School of Computer Science and Technology Shandong UniversityQingdao 266237China Key Lab of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China
Mass spectrometry plays a crucial role in biomedicine by detecting isotopes,contributing significantly to research,diagnostics,and therapy *** study introduces IsoFusion,a deep learning model designed to address isoto... 详细信息
来源: 评论
Reversible Data Hiding for 3D Mesh Model Based on Block Modulus Encryption and Multi-MSB Prediction  10th
Reversible Data Hiding for 3D Mesh Model Based on Block Modu...
收藏 引用
10th International Conference of Pioneering computer Scientists, Engineers and Educators, ICPCSEE 2024
作者: Fu, Zihao Gao, Yang Lyu, Wanli Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei230601 China
Reversible data hiding in encrypted domain (RDH-ED) fortifies data security and privacy safeguards while upholding the original data’s integrity and accessibility. Current research on RDH-ED focuses on 2D images, whi... 详细信息
来源: 评论
Adversarial Example Generation Method Based on Probability Histogram Equalization
Adversarial Example Generation Method Based on Probability H...
收藏 引用
第42届中国控制会议
作者: Youqing Fang Jingwen Jia Yuhai Yang Wan-Li Lyu Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and TechnologyAnhui University
CNNs(Convolutional Neural Networks) have a good performance on most classification tasks,but they are vulnerable when meeting adversarial *** and design of highly aggressive adversarial examples can help enhance the s...
来源: 评论
Improving Transferability Reversible Adversarial Examples Based on Flipping Transformation
Improving Transferability Reversible Adversarial Examples Ba...
收藏 引用
作者: Youqing Fang Jingwen Jia Yuhai Yang Wanli Lyu Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University
Adding subtle perturbations to an image can cause the classification model to misclassify, and such images are called adversarial examples. Adversarial examples threaten the safe use of deep neural networks, but when ...
来源: 评论
Adversarial Example Generation Method Based on Probability Histogram Equalization
Adversarial Example Generation Method Based on Probability H...
收藏 引用
Chinese Control Conference (CCC)
作者: Youqing Fang Jingwen Jia Yuhai Yang Wan-Li Lyu Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China
CNNs (Convolutional Neural Networks) have a good performance on most classification tasks, but they are vulnerable when meeting adversarial examples. Research and design of highly aggressive adversarial examples can h...
来源: 评论