咨询与建议

限定检索结果

文献类型

  • 27 篇 会议
  • 17 篇 期刊文献

馆藏范围

  • 44 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 27 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 7 篇 控制科学与工程
    • 6 篇 信息与通信工程
    • 4 篇 生物工程
    • 3 篇 网络空间安全
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 电气工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
  • 11 篇 理学
    • 7 篇 数学
    • 4 篇 生物学
    • 1 篇 物理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 8 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...

主题

  • 3 篇 graph neural net...
  • 3 篇 machine learning
  • 2 篇 query processing
  • 2 篇 deep learning
  • 2 篇 sliding mode con...
  • 2 篇 semantics
  • 2 篇 image recognitio...
  • 1 篇 parallel process...
  • 1 篇 incomplete data
  • 1 篇 data integration
  • 1 篇 graph convolutio...
  • 1 篇 deep neural netw...
  • 1 篇 partial label le...
  • 1 篇 regret bound
  • 1 篇 computer archite...
  • 1 篇 intelligent
  • 1 篇 instance
  • 1 篇 operations
  • 1 篇 system
  • 1 篇 highway network

机构

  • 11 篇 key lab of intel...
  • 4 篇 the key lab of b...
  • 4 篇 zhejiang key lab...
  • 4 篇 college of compu...
  • 4 篇 alibaba group
  • 3 篇 department of co...
  • 3 篇 zhejiang univ ke...
  • 3 篇 school of softwa...
  • 3 篇 the state key la...
  • 3 篇 college of compu...
  • 3 篇 zhejiang lab
  • 2 篇 huazhong univers...
  • 2 篇 institute of blo...
  • 2 篇 wuhan univ sch c...
  • 2 篇 washington state...
  • 2 篇 wuhan national l...
  • 2 篇 school of comput...
  • 2 篇 state key lab of...
  • 2 篇 key lab. of inte...
  • 2 篇 school of comput...

作者

  • 13 篇 chen gang
  • 9 篇 wang haobo
  • 6 篇 hu tianlei
  • 6 篇 chen ke
  • 5 篇 gang chen
  • 4 篇 chen chen
  • 4 篇 feng lei
  • 4 篇 liu weiwei
  • 4 篇 zhao junbo
  • 3 篇 li zhao
  • 3 篇 li yixuan
  • 3 篇 gao yunjun
  • 2 篇 weijian chen
  • 2 篇 mao yuren
  • 2 篇 xiong jing-jing
  • 2 篇 shou lidan
  • 2 篇 yunjun gao
  • 2 篇 wu sai
  • 2 篇 haobo wang
  • 2 篇 yan xiaoran

语言

  • 36 篇 英文
  • 5 篇 其他
  • 3 篇 中文
检索条件"机构=Key Lab of Intelligent Computing based Big Data of Zhejiang Province"
44 条 记 录,以下是1-10 订阅
排序:
SMILE: A Cost-Effective System for Serving Massive Pretrained Language Models in the Cloud  23
SMILE: A Cost-Effective System for Serving Massive Pretraine...
收藏 引用
2023 ACM/SIGMOD International Conference on Management of data, SIGMOD 2023
作者: Wang, Jue Chen, Ke Shou, Lidan Jiang, Dawei Chen, Gang Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang University Hangzhou China
Deep learning models, particularly pre-trained language models (PLMs), have become increasingly important for a variety of applications that require text/language processing. However, these models are resource-intensi... 详细信息
来源: 评论
Complementary label Queries for Efficient Active Learning  23
Complementary Label Queries for Efficient Active Learning
收藏 引用
6th International Conference on Image and Graphics Processing, ICIGP 2023
作者: Liu, Shengyuan Hu, Tianlei Chen, Ke Mao, Yunqing Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang University China Co. Ltd. China
Many active learning methods are based on the assumption that a learner simply asks for the true labels of some training data from annotators. Unfortunately, it is expensive to exactly annotate instances in real-world... 详细信息
来源: 评论
Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
收藏 引用
Journal of zhejiang University-Science A(Applied Physics & Engineering) 2022年 第10期23卷 832-837页
作者: Wen-tao HU Da-wei JIANG Sai WU Ke CHEN Gang CHEN Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang UniversityHangzhou 310027China
1Introduction data are at the heart of intelligent rail systems in the high-speed transportation sector(Zhou et al.,2020;Ho et al.,2021;Hu et al.,2021;Chen et al.,2022).The core of modern intelligent railroad systems ... 详细信息
来源: 评论
LeapGNN: Accelerating Distributed GNN Training Leveraging Feature-Centric Model Migration  23
LeapGNN: Accelerating Distributed GNN Training Leveraging Fe...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Xuechen The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ... 详细信息
来源: 评论
Uncertainty-aware complementary label queries for active learning
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2023年 第10期24卷 1497-1503页
作者: Shengyuan LIU Ke CHEN Tianlei HU Yunqing MAO Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang UniversityHangzhou 310027China State Key Laboratory of Blockchain and Data Security Zhejiang UniversityHangzhou 310027China City Cloud Technology(China)Co. Ltd.Hangzhou 310000China
Many active learning methods assume that a learner can simply ask for the full annotations of some training data from *** methods mainly try to cut the annotation costs by minimizing the number of annotation ***,annot... 详细信息
来源: 评论
Dual Enhancement for Multi-label Learning with Missing labels  21
Dual Enhancement for Multi-Label Learning with Missing Label...
收藏 引用
4th International Conference on Machine Learning and Machine Intelligence, MLMI 2021
作者: Liu, Shengyuan Wang, Haobo Hu, Tianlei Chen, Ke Key Lab of Intelligent Computing Based Big Data of Zhejiang Province College of Computer Science and Technology Zhejiang University China
The goal of multi-label learning with missing labels (MLML) is assigning each testing instance multiple labels given training instances that have a partial set of labels. The most challenging issue is to complete the ... 详细信息
来源: 评论
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerators  31
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerato...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Yang, Siling He, Shuibing Wang, Wenjiong Yin, Yanlong Wu, Tong Chen, Weijian Zhang, Xuechen Sun, Xian-He Feng, Dan The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States Illinois Institute of Technology United States Huazhong University of Science and Technology China Wuhan National Laboratory for Optoelectronics China
Graph convolutional networks (GCNs) are popular for a variety of graph learning tasks. ReRAM-based processing-in-memory (PIM) accelerators are promising to expedite GCN training owing to their in-situ computing capabi... 详细信息
来源: 评论
Byzantine-Robust Learning on Heterogeneous data via Gradient Splitting
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yuchen Chen, Chen Lyu, Lingjuan Wu, Fangzhao Wu, Sai Chen, Gang Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang University Hangzhou China Sony AI United States Microsoft United States
Federated learning has exhibited vulnerabilities to Byzantine attacks, where the Byzantine attackers can send arbitrary gradients to a central server to destroy the convergence and performance of the global model. A w... 详细信息
来源: 评论
SPA: a graph spectral alignment perspective for domain adaptation  23
SPA: a graph spectral alignment perspective for domain adapt...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Zhiqing Xiao Haobo Wang Ying Jin Lei Feng Gang Chen Fei Huang Junbo Zhao College of Computer Science and Technology Zhejiang University and Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University School of Software Technology Zhejiang University and Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University CUHK-SenseTime Joint Lab The Chinese University of Hong Kong School of Computer Science and Engineering Nanyang Technological University Alibaba Group
Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to extend the in-domain model to the distinctive target domains where the data distributions differ. Most prior works focus on capturing the i...
来源: 评论
Reliability Analysis of Heterogeneous Sensor-Cloud Systems against Targeted Attacks
收藏 引用
China Communications 2022年 第8期19卷 181-197页
作者: Hao Peng Zhen Qian Guangquan Xu Kejie Mao Kangtian Li Dandan Zhao Department of Computer Science and Engineering Zhejiang Normal UniversityJinhua Zhejiang 321004China Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province Zhejiang Normal UniversityJinhua Zhejiang 321004China The Big Data School Qingdao Huanghai UniversityQingdao Shandong 266427China College of Intelligence and Computing Tianjin UniversityTianjin 300072China
based on the wide application of cloud computing and wireless sensor networks in various fields,the Sensor-Cloud System(SCS)plays an indispensable role between the physical world and the network ***,due to the close c... 详细信息
来源: 评论